Predicted thermal superluminescence in low-pressure air
Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found...
Ausführliche Beschreibung
Autor*in: |
Aramyan, A. R. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: Laser physics - Bristol [u.a.] : IOP Publ., 2006, 20(2010), 6 vom: 03. Mai, Seite 1554-1558 |
---|---|
Übergeordnetes Werk: |
volume:20 ; year:2010 ; number:6 ; day:03 ; month:05 ; pages:1554-1558 |
Links: |
---|
DOI / URN: |
10.1134/S1054660X10110022 |
---|
Katalog-ID: |
SPR020131933 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR020131933 | ||
003 | DE-627 | ||
005 | 20230330161616.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1134/S1054660X10110022 |2 doi | |
035 | |a (DE-627)SPR020131933 | ||
035 | |a (SPR)S1054660X10110022-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Aramyan, A. R. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Predicted thermal superluminescence in low-pressure air |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2010 | ||
520 | |a Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300 K ≲ T ≲ 3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested. | ||
650 | 4 | |a Laser Physics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rydberg State |7 (dpeaa)DE-He213 | |
650 | 4 | |a Excited Atom |7 (dpeaa)DE-He213 | |
650 | 4 | |a Space Shuttle |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rydberg Atom |7 (dpeaa)DE-He213 | |
700 | 1 | |a Haroyan, K. P. |4 aut | |
700 | 1 | |a Galechyan, G. A. |4 aut | |
700 | 1 | |a Mangasaryan, N. R. |4 aut | |
700 | 1 | |a Nersisyan, H. B. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Laser physics |d Bristol [u.a.] : IOP Publ., 2006 |g 20(2010), 6 vom: 03. Mai, Seite 1554-1558 |w (DE-627)509758444 |w (DE-600)2228434-5 |x 1555-6611 |7 nnns |
773 | 1 | 8 | |g volume:20 |g year:2010 |g number:6 |g day:03 |g month:05 |g pages:1554-1558 |
856 | 4 | 0 | |u https://dx.doi.org/10.1134/S1054660X10110022 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2190 | ||
951 | |a AR | ||
952 | |d 20 |j 2010 |e 6 |b 03 |c 05 |h 1554-1558 |
author_variant |
a r a ar ara k p h kp kph g a g ga gag n r m nr nrm h b n hb hbn |
---|---|
matchkey_str |
article:15556611:2010----::rdcetemluelmnsecil |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1134/S1054660X10110022 doi (DE-627)SPR020131933 (SPR)S1054660X10110022-e DE-627 ger DE-627 rakwb eng Aramyan, A. R. verfasserin aut Predicted thermal superluminescence in low-pressure air 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300 K ≲ T ≲ 3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested. Laser Physics (dpeaa)DE-He213 Rydberg State (dpeaa)DE-He213 Excited Atom (dpeaa)DE-He213 Space Shuttle (dpeaa)DE-He213 Rydberg Atom (dpeaa)DE-He213 Haroyan, K. P. aut Galechyan, G. A. aut Mangasaryan, N. R. aut Nersisyan, H. B. aut Enthalten in Laser physics Bristol [u.a.] : IOP Publ., 2006 20(2010), 6 vom: 03. Mai, Seite 1554-1558 (DE-627)509758444 (DE-600)2228434-5 1555-6611 nnns volume:20 year:2010 number:6 day:03 month:05 pages:1554-1558 https://dx.doi.org/10.1134/S1054660X10110022 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_24 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_150 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2190 AR 20 2010 6 03 05 1554-1558 |
spelling |
10.1134/S1054660X10110022 doi (DE-627)SPR020131933 (SPR)S1054660X10110022-e DE-627 ger DE-627 rakwb eng Aramyan, A. R. verfasserin aut Predicted thermal superluminescence in low-pressure air 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300 K ≲ T ≲ 3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested. Laser Physics (dpeaa)DE-He213 Rydberg State (dpeaa)DE-He213 Excited Atom (dpeaa)DE-He213 Space Shuttle (dpeaa)DE-He213 Rydberg Atom (dpeaa)DE-He213 Haroyan, K. P. aut Galechyan, G. A. aut Mangasaryan, N. R. aut Nersisyan, H. B. aut Enthalten in Laser physics Bristol [u.a.] : IOP Publ., 2006 20(2010), 6 vom: 03. Mai, Seite 1554-1558 (DE-627)509758444 (DE-600)2228434-5 1555-6611 nnns volume:20 year:2010 number:6 day:03 month:05 pages:1554-1558 https://dx.doi.org/10.1134/S1054660X10110022 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_24 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_150 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2190 AR 20 2010 6 03 05 1554-1558 |
allfields_unstemmed |
10.1134/S1054660X10110022 doi (DE-627)SPR020131933 (SPR)S1054660X10110022-e DE-627 ger DE-627 rakwb eng Aramyan, A. R. verfasserin aut Predicted thermal superluminescence in low-pressure air 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300 K ≲ T ≲ 3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested. Laser Physics (dpeaa)DE-He213 Rydberg State (dpeaa)DE-He213 Excited Atom (dpeaa)DE-He213 Space Shuttle (dpeaa)DE-He213 Rydberg Atom (dpeaa)DE-He213 Haroyan, K. P. aut Galechyan, G. A. aut Mangasaryan, N. R. aut Nersisyan, H. B. aut Enthalten in Laser physics Bristol [u.a.] : IOP Publ., 2006 20(2010), 6 vom: 03. Mai, Seite 1554-1558 (DE-627)509758444 (DE-600)2228434-5 1555-6611 nnns volume:20 year:2010 number:6 day:03 month:05 pages:1554-1558 https://dx.doi.org/10.1134/S1054660X10110022 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_24 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_150 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2190 AR 20 2010 6 03 05 1554-1558 |
allfieldsGer |
10.1134/S1054660X10110022 doi (DE-627)SPR020131933 (SPR)S1054660X10110022-e DE-627 ger DE-627 rakwb eng Aramyan, A. R. verfasserin aut Predicted thermal superluminescence in low-pressure air 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300 K ≲ T ≲ 3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested. Laser Physics (dpeaa)DE-He213 Rydberg State (dpeaa)DE-He213 Excited Atom (dpeaa)DE-He213 Space Shuttle (dpeaa)DE-He213 Rydberg Atom (dpeaa)DE-He213 Haroyan, K. P. aut Galechyan, G. A. aut Mangasaryan, N. R. aut Nersisyan, H. B. aut Enthalten in Laser physics Bristol [u.a.] : IOP Publ., 2006 20(2010), 6 vom: 03. Mai, Seite 1554-1558 (DE-627)509758444 (DE-600)2228434-5 1555-6611 nnns volume:20 year:2010 number:6 day:03 month:05 pages:1554-1558 https://dx.doi.org/10.1134/S1054660X10110022 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_24 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_150 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2190 AR 20 2010 6 03 05 1554-1558 |
allfieldsSound |
10.1134/S1054660X10110022 doi (DE-627)SPR020131933 (SPR)S1054660X10110022-e DE-627 ger DE-627 rakwb eng Aramyan, A. R. verfasserin aut Predicted thermal superluminescence in low-pressure air 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2010 Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300 K ≲ T ≲ 3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested. Laser Physics (dpeaa)DE-He213 Rydberg State (dpeaa)DE-He213 Excited Atom (dpeaa)DE-He213 Space Shuttle (dpeaa)DE-He213 Rydberg Atom (dpeaa)DE-He213 Haroyan, K. P. aut Galechyan, G. A. aut Mangasaryan, N. R. aut Nersisyan, H. B. aut Enthalten in Laser physics Bristol [u.a.] : IOP Publ., 2006 20(2010), 6 vom: 03. Mai, Seite 1554-1558 (DE-627)509758444 (DE-600)2228434-5 1555-6611 nnns volume:20 year:2010 number:6 day:03 month:05 pages:1554-1558 https://dx.doi.org/10.1134/S1054660X10110022 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_24 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_150 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2190 AR 20 2010 6 03 05 1554-1558 |
language |
English |
source |
Enthalten in Laser physics 20(2010), 6 vom: 03. Mai, Seite 1554-1558 volume:20 year:2010 number:6 day:03 month:05 pages:1554-1558 |
sourceStr |
Enthalten in Laser physics 20(2010), 6 vom: 03. Mai, Seite 1554-1558 volume:20 year:2010 number:6 day:03 month:05 pages:1554-1558 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Laser Physics Rydberg State Excited Atom Space Shuttle Rydberg Atom |
isfreeaccess_bool |
false |
container_title |
Laser physics |
authorswithroles_txt_mv |
Aramyan, A. R. @@aut@@ Haroyan, K. P. @@aut@@ Galechyan, G. A. @@aut@@ Mangasaryan, N. R. @@aut@@ Nersisyan, H. B. @@aut@@ |
publishDateDaySort_date |
2010-05-03T00:00:00Z |
hierarchy_top_id |
509758444 |
id |
SPR020131933 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR020131933</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230330161616.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1054660X10110022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR020131933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S1054660X10110022-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aramyan, A. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicted thermal superluminescence in low-pressure air</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300 K ≲ T ≲ 3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser Physics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rydberg State</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Excited Atom</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space Shuttle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rydberg Atom</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haroyan, K. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galechyan, G. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mangasaryan, N. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nersisyan, H. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Laser physics</subfield><subfield code="d">Bristol [u.a.] : IOP Publ., 2006</subfield><subfield code="g">20(2010), 6 vom: 03. Mai, Seite 1554-1558</subfield><subfield code="w">(DE-627)509758444</subfield><subfield code="w">(DE-600)2228434-5</subfield><subfield code="x">1555-6611</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:6</subfield><subfield code="g">day:03</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1554-1558</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S1054660X10110022</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2010</subfield><subfield code="e">6</subfield><subfield code="b">03</subfield><subfield code="c">05</subfield><subfield code="h">1554-1558</subfield></datafield></record></collection>
|
author |
Aramyan, A. R. |
spellingShingle |
Aramyan, A. R. misc Laser Physics misc Rydberg State misc Excited Atom misc Space Shuttle misc Rydberg Atom Predicted thermal superluminescence in low-pressure air |
authorStr |
Aramyan, A. R. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)509758444 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1555-6611 |
topic_title |
Predicted thermal superluminescence in low-pressure air Laser Physics (dpeaa)DE-He213 Rydberg State (dpeaa)DE-He213 Excited Atom (dpeaa)DE-He213 Space Shuttle (dpeaa)DE-He213 Rydberg Atom (dpeaa)DE-He213 |
topic |
misc Laser Physics misc Rydberg State misc Excited Atom misc Space Shuttle misc Rydberg Atom |
topic_unstemmed |
misc Laser Physics misc Rydberg State misc Excited Atom misc Space Shuttle misc Rydberg Atom |
topic_browse |
misc Laser Physics misc Rydberg State misc Excited Atom misc Space Shuttle misc Rydberg Atom |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Laser physics |
hierarchy_parent_id |
509758444 |
hierarchy_top_title |
Laser physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)509758444 (DE-600)2228434-5 |
title |
Predicted thermal superluminescence in low-pressure air |
ctrlnum |
(DE-627)SPR020131933 (SPR)S1054660X10110022-e |
title_full |
Predicted thermal superluminescence in low-pressure air |
author_sort |
Aramyan, A. R. |
journal |
Laser physics |
journalStr |
Laser physics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
container_start_page |
1554 |
author_browse |
Aramyan, A. R. Haroyan, K. P. Galechyan, G. A. Mangasaryan, N. R. Nersisyan, H. B. |
container_volume |
20 |
format_se |
Elektronische Aufsätze |
author-letter |
Aramyan, A. R. |
doi_str_mv |
10.1134/S1054660X10110022 |
title_sort |
predicted thermal superluminescence in low-pressure air |
title_auth |
Predicted thermal superluminescence in low-pressure air |
abstract |
Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300 K ≲ T ≲ 3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested. © Pleiades Publishing, Ltd. 2010 |
abstractGer |
Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300 K ≲ T ≲ 3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested. © Pleiades Publishing, Ltd. 2010 |
abstract_unstemmed |
Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300 K ≲ T ≲ 3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested. © Pleiades Publishing, Ltd. 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_24 GBV_ILN_40 GBV_ILN_63 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_110 GBV_ILN_150 GBV_ILN_161 GBV_ILN_213 GBV_ILN_230 GBV_ILN_293 GBV_ILN_702 GBV_ILN_2190 |
container_issue |
6 |
title_short |
Predicted thermal superluminescence in low-pressure air |
url |
https://dx.doi.org/10.1134/S1054660X10110022 |
remote_bool |
true |
author2 |
Haroyan, K. P. Galechyan, G. A. Mangasaryan, N. R. Nersisyan, H. B. |
author2Str |
Haroyan, K. P. Galechyan, G. A. Mangasaryan, N. R. Nersisyan, H. B. |
ppnlink |
509758444 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S1054660X10110022 |
up_date |
2024-07-03T14:06:56.727Z |
_version_ |
1803567095330373632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR020131933</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230330161616.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1054660X10110022</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR020131933</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S1054660X10110022-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aramyan, A. R.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicted thermal superluminescence in low-pressure air</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract It is shown that due to the dissociation of the molecular oxygen it is possible to obtain inverted population in low pressure air by heating. As a result of the quenching of the corresponding levels of the atomic oxygen the thermal superluminescent radiation is generated. It has been found that the threshold of the overpopulation is exceeded at the air temperature 2300 K ≲ T ≲ 3000 K. Using this effect a possible mechanism for the generation of the flashes of the radiation in air observed on the airframe of the space shuttle during its descent and reentry in the atmosphere is suggested.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Laser Physics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rydberg State</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Excited Atom</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Space Shuttle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rydberg Atom</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Haroyan, K. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Galechyan, G. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mangasaryan, N. R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nersisyan, H. B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Laser physics</subfield><subfield code="d">Bristol [u.a.] : IOP Publ., 2006</subfield><subfield code="g">20(2010), 6 vom: 03. Mai, Seite 1554-1558</subfield><subfield code="w">(DE-627)509758444</subfield><subfield code="w">(DE-600)2228434-5</subfield><subfield code="x">1555-6611</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:20</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:6</subfield><subfield code="g">day:03</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1554-1558</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S1054660X10110022</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">20</subfield><subfield code="j">2010</subfield><subfield code="e">6</subfield><subfield code="b">03</subfield><subfield code="c">05</subfield><subfield code="h">1554-1558</subfield></datafield></record></collection>
|
score |
7.400732 |