An organic-inorganic polymeric alumina hybrid nanocomposite
Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilan...
Ausführliche Beschreibung
Autor*in: |
Rabiee, Ahmad [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: Polymer science - Moscow : MAIK Nauka/Interperiodics Publ., 2006, 57(2015), 3 vom: Mai, Seite 264-273 |
---|---|
Übergeordnetes Werk: |
volume:57 ; year:2015 ; number:3 ; month:05 ; pages:264-273 |
Links: |
---|
DOI / URN: |
10.1134/S1560090415030069 |
---|
Katalog-ID: |
SPR020256760 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR020256760 | ||
003 | DE-627 | ||
005 | 20230519201934.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1134/S1560090415030069 |2 doi | |
035 | |a (DE-627)SPR020256760 | ||
035 | |a (SPR)S1560090415030069-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Rabiee, Ahmad |e verfasserin |4 aut | |
245 | 1 | 3 | |a An organic-inorganic polymeric alumina hybrid nanocomposite |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2015 | ||
520 | |a Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of $ Al_{2} %$ O_{3} $. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer. | ||
650 | 4 | |a Polymer Science Series |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coupling Agent |7 (dpeaa)DE-He213 | |
650 | 4 | |a Thermal Gravimetric Analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Silane Coupling Agent |7 (dpeaa)DE-He213 | |
650 | 4 | |a Dynamic Mechanical Thermal Analysis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Baharvand, Habibollah |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Polymer science |d Moscow : MAIK Nauka/Interperiodics Publ., 2006 |g 57(2015), 3 vom: Mai, Seite 264-273 |w (DE-627)513506896 |w (DE-600)2239942-2 |x 1555-6123 |7 nnns |
773 | 1 | 8 | |g volume:57 |g year:2015 |g number:3 |g month:05 |g pages:264-273 |
856 | 4 | 0 | |u https://dx.doi.org/10.1134/S1560090415030069 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 57 |j 2015 |e 3 |c 05 |h 264-273 |
author_variant |
a r ar h b hb |
---|---|
matchkey_str |
article:15556123:2015----::nraiiogncoyeiauiayr |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1134/S1560090415030069 doi (DE-627)SPR020256760 (SPR)S1560090415030069-e DE-627 ger DE-627 rakwb eng Rabiee, Ahmad verfasserin aut An organic-inorganic polymeric alumina hybrid nanocomposite 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of $ Al_{2} %$ O_{3} $. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer. Polymer Science Series (dpeaa)DE-He213 Coupling Agent (dpeaa)DE-He213 Thermal Gravimetric Analysis (dpeaa)DE-He213 Silane Coupling Agent (dpeaa)DE-He213 Dynamic Mechanical Thermal Analysis (dpeaa)DE-He213 Baharvand, Habibollah aut Enthalten in Polymer science Moscow : MAIK Nauka/Interperiodics Publ., 2006 57(2015), 3 vom: Mai, Seite 264-273 (DE-627)513506896 (DE-600)2239942-2 1555-6123 nnns volume:57 year:2015 number:3 month:05 pages:264-273 https://dx.doi.org/10.1134/S1560090415030069 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 57 2015 3 05 264-273 |
spelling |
10.1134/S1560090415030069 doi (DE-627)SPR020256760 (SPR)S1560090415030069-e DE-627 ger DE-627 rakwb eng Rabiee, Ahmad verfasserin aut An organic-inorganic polymeric alumina hybrid nanocomposite 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of $ Al_{2} %$ O_{3} $. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer. Polymer Science Series (dpeaa)DE-He213 Coupling Agent (dpeaa)DE-He213 Thermal Gravimetric Analysis (dpeaa)DE-He213 Silane Coupling Agent (dpeaa)DE-He213 Dynamic Mechanical Thermal Analysis (dpeaa)DE-He213 Baharvand, Habibollah aut Enthalten in Polymer science Moscow : MAIK Nauka/Interperiodics Publ., 2006 57(2015), 3 vom: Mai, Seite 264-273 (DE-627)513506896 (DE-600)2239942-2 1555-6123 nnns volume:57 year:2015 number:3 month:05 pages:264-273 https://dx.doi.org/10.1134/S1560090415030069 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 57 2015 3 05 264-273 |
allfields_unstemmed |
10.1134/S1560090415030069 doi (DE-627)SPR020256760 (SPR)S1560090415030069-e DE-627 ger DE-627 rakwb eng Rabiee, Ahmad verfasserin aut An organic-inorganic polymeric alumina hybrid nanocomposite 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of $ Al_{2} %$ O_{3} $. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer. Polymer Science Series (dpeaa)DE-He213 Coupling Agent (dpeaa)DE-He213 Thermal Gravimetric Analysis (dpeaa)DE-He213 Silane Coupling Agent (dpeaa)DE-He213 Dynamic Mechanical Thermal Analysis (dpeaa)DE-He213 Baharvand, Habibollah aut Enthalten in Polymer science Moscow : MAIK Nauka/Interperiodics Publ., 2006 57(2015), 3 vom: Mai, Seite 264-273 (DE-627)513506896 (DE-600)2239942-2 1555-6123 nnns volume:57 year:2015 number:3 month:05 pages:264-273 https://dx.doi.org/10.1134/S1560090415030069 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 57 2015 3 05 264-273 |
allfieldsGer |
10.1134/S1560090415030069 doi (DE-627)SPR020256760 (SPR)S1560090415030069-e DE-627 ger DE-627 rakwb eng Rabiee, Ahmad verfasserin aut An organic-inorganic polymeric alumina hybrid nanocomposite 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of $ Al_{2} %$ O_{3} $. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer. Polymer Science Series (dpeaa)DE-He213 Coupling Agent (dpeaa)DE-He213 Thermal Gravimetric Analysis (dpeaa)DE-He213 Silane Coupling Agent (dpeaa)DE-He213 Dynamic Mechanical Thermal Analysis (dpeaa)DE-He213 Baharvand, Habibollah aut Enthalten in Polymer science Moscow : MAIK Nauka/Interperiodics Publ., 2006 57(2015), 3 vom: Mai, Seite 264-273 (DE-627)513506896 (DE-600)2239942-2 1555-6123 nnns volume:57 year:2015 number:3 month:05 pages:264-273 https://dx.doi.org/10.1134/S1560090415030069 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 57 2015 3 05 264-273 |
allfieldsSound |
10.1134/S1560090415030069 doi (DE-627)SPR020256760 (SPR)S1560090415030069-e DE-627 ger DE-627 rakwb eng Rabiee, Ahmad verfasserin aut An organic-inorganic polymeric alumina hybrid nanocomposite 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2015 Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of $ Al_{2} %$ O_{3} $. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer. Polymer Science Series (dpeaa)DE-He213 Coupling Agent (dpeaa)DE-He213 Thermal Gravimetric Analysis (dpeaa)DE-He213 Silane Coupling Agent (dpeaa)DE-He213 Dynamic Mechanical Thermal Analysis (dpeaa)DE-He213 Baharvand, Habibollah aut Enthalten in Polymer science Moscow : MAIK Nauka/Interperiodics Publ., 2006 57(2015), 3 vom: Mai, Seite 264-273 (DE-627)513506896 (DE-600)2239942-2 1555-6123 nnns volume:57 year:2015 number:3 month:05 pages:264-273 https://dx.doi.org/10.1134/S1560090415030069 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 57 2015 3 05 264-273 |
language |
English |
source |
Enthalten in Polymer science 57(2015), 3 vom: Mai, Seite 264-273 volume:57 year:2015 number:3 month:05 pages:264-273 |
sourceStr |
Enthalten in Polymer science 57(2015), 3 vom: Mai, Seite 264-273 volume:57 year:2015 number:3 month:05 pages:264-273 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Polymer Science Series Coupling Agent Thermal Gravimetric Analysis Silane Coupling Agent Dynamic Mechanical Thermal Analysis |
isfreeaccess_bool |
false |
container_title |
Polymer science |
authorswithroles_txt_mv |
Rabiee, Ahmad @@aut@@ Baharvand, Habibollah @@aut@@ |
publishDateDaySort_date |
2015-05-01T00:00:00Z |
hierarchy_top_id |
513506896 |
id |
SPR020256760 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR020256760</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519201934.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1560090415030069</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR020256760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S1560090415030069-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rabiee, Ahmad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An organic-inorganic polymeric alumina hybrid nanocomposite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of $ Al_{2} %$ O_{3} $. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymer Science Series</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupling Agent</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Gravimetric Analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silane Coupling Agent</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic Mechanical Thermal Analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baharvand, Habibollah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer science</subfield><subfield code="d">Moscow : MAIK Nauka/Interperiodics Publ., 2006</subfield><subfield code="g">57(2015), 3 vom: Mai, Seite 264-273</subfield><subfield code="w">(DE-627)513506896</subfield><subfield code="w">(DE-600)2239942-2</subfield><subfield code="x">1555-6123</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:264-273</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S1560090415030069</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="c">05</subfield><subfield code="h">264-273</subfield></datafield></record></collection>
|
author |
Rabiee, Ahmad |
spellingShingle |
Rabiee, Ahmad misc Polymer Science Series misc Coupling Agent misc Thermal Gravimetric Analysis misc Silane Coupling Agent misc Dynamic Mechanical Thermal Analysis An organic-inorganic polymeric alumina hybrid nanocomposite |
authorStr |
Rabiee, Ahmad |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)513506896 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1555-6123 |
topic_title |
An organic-inorganic polymeric alumina hybrid nanocomposite Polymer Science Series (dpeaa)DE-He213 Coupling Agent (dpeaa)DE-He213 Thermal Gravimetric Analysis (dpeaa)DE-He213 Silane Coupling Agent (dpeaa)DE-He213 Dynamic Mechanical Thermal Analysis (dpeaa)DE-He213 |
topic |
misc Polymer Science Series misc Coupling Agent misc Thermal Gravimetric Analysis misc Silane Coupling Agent misc Dynamic Mechanical Thermal Analysis |
topic_unstemmed |
misc Polymer Science Series misc Coupling Agent misc Thermal Gravimetric Analysis misc Silane Coupling Agent misc Dynamic Mechanical Thermal Analysis |
topic_browse |
misc Polymer Science Series misc Coupling Agent misc Thermal Gravimetric Analysis misc Silane Coupling Agent misc Dynamic Mechanical Thermal Analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Polymer science |
hierarchy_parent_id |
513506896 |
hierarchy_top_title |
Polymer science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)513506896 (DE-600)2239942-2 |
title |
An organic-inorganic polymeric alumina hybrid nanocomposite |
ctrlnum |
(DE-627)SPR020256760 (SPR)S1560090415030069-e |
title_full |
An organic-inorganic polymeric alumina hybrid nanocomposite |
author_sort |
Rabiee, Ahmad |
journal |
Polymer science |
journalStr |
Polymer science |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
container_start_page |
264 |
author_browse |
Rabiee, Ahmad Baharvand, Habibollah |
container_volume |
57 |
format_se |
Elektronische Aufsätze |
author-letter |
Rabiee, Ahmad |
doi_str_mv |
10.1134/S1560090415030069 |
title_sort |
organic-inorganic polymeric alumina hybrid nanocomposite |
title_auth |
An organic-inorganic polymeric alumina hybrid nanocomposite |
abstract |
Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of $ Al_{2} %$ O_{3} $. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer. © Pleiades Publishing, Ltd. 2015 |
abstractGer |
Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of $ Al_{2} %$ O_{3} $. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer. © Pleiades Publishing, Ltd. 2015 |
abstract_unstemmed |
Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of $ Al_{2} %$ O_{3} $. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer. © Pleiades Publishing, Ltd. 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
3 |
title_short |
An organic-inorganic polymeric alumina hybrid nanocomposite |
url |
https://dx.doi.org/10.1134/S1560090415030069 |
remote_bool |
true |
author2 |
Baharvand, Habibollah |
author2Str |
Baharvand, Habibollah |
ppnlink |
513506896 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S1560090415030069 |
up_date |
2024-07-03T14:54:34.826Z |
_version_ |
1803570092271730688 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR020256760</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519201934.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1560090415030069</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR020256760</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S1560090415030069-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rabiee, Ahmad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An organic-inorganic polymeric alumina hybrid nanocomposite</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract An organic-inorganic hybrid-nanocomposite of poly(2-acrylamido-2-methyl-1-propane sulfonic acid sodium salt) and $ Al_{2} %$ O_{3} $ with nano-alumina particles was synthesized in two steps. Firstly, the surface of nano-alumina particles was modified by 3-methacryloxy-propyl-trimethoxysilane as a coupling agent by sol-gel method. Secondly, the surface modified nano-alumina particles were grafted onto the poly(2-acrylamido-2-methyl-propane sulfonic acid sodium salt) by free radical polymerization. The spectral (FTIR spectroscopy) and thermal (TGA) methods, verified the participation of coupling agent, polymer and aluminum oxide (alumina) into the hybrid structure. Introduction of silanol groups into the alumina particles leads to a better distribution of particles into the polymeric matrix. The results also showed four steps of weight loss for the hybrid nanocomposite, which includes about 80% weight loss until 700°C and 20% of char yield, which is due to presence of alumina, silica and sodium oxide in hybrid nanocomposite. SEM and TEM studies confirmed that the nano-alumina particles have been spherical and homogeneously dispersed throughout the sample with dimensions in the range of nanosizes inside the nanocomposite sample containing 5 wt % of $ Al_{2} %$ O_{3} $. The analysis of thermo-mechanical properties of homopolymer and its nanocomposite revealed the shift in storage modulus and tanδ peaks that was attributed to morphological changes in the nanocomposites due to the amount of inorganic nano-particles and their distribution in polymer matrix. The adsorption behavior showed that hybrid nanocomposites have ability for interaction with heavy metal ions by means of adsorption through interaction between the oppositely charged functionalities and metal ions. However, it was found that the adsorption efficiency of the hybrid nanocomposite is much better than that of its pure polymer.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Polymer Science Series</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupling Agent</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Gravimetric Analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Silane Coupling Agent</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic Mechanical Thermal Analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baharvand, Habibollah</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Polymer science</subfield><subfield code="d">Moscow : MAIK Nauka/Interperiodics Publ., 2006</subfield><subfield code="g">57(2015), 3 vom: Mai, Seite 264-273</subfield><subfield code="w">(DE-627)513506896</subfield><subfield code="w">(DE-600)2239942-2</subfield><subfield code="x">1555-6123</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:57</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:3</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:264-273</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S1560090415030069</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">57</subfield><subfield code="j">2015</subfield><subfield code="e">3</subfield><subfield code="c">05</subfield><subfield code="h">264-273</subfield></datafield></record></collection>
|
score |
7.400487 |