Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative
Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classifie...
Ausführliche Beschreibung
Autor*in: |
Faiella, Eliodoro [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Italian Society of Medical Radiology 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: La Radiologia medica - Milan : Springer Milan, 2006, 123(2017), 2 vom: 10. Okt., Seite 143-152 |
---|---|
Übergeordnetes Werk: |
volume:123 ; year:2017 ; number:2 ; day:10 ; month:10 ; pages:143-152 |
Links: |
---|
DOI / URN: |
10.1007/s11547-017-0814-y |
---|
Katalog-ID: |
SPR020690266 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR020690266 | ||
003 | DE-627 | ||
005 | 20230519200821.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11547-017-0814-y |2 doi | |
035 | |a (DE-627)SPR020690266 | ||
035 | |a (SPR)s11547-017-0814-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Faiella, Eliodoro |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Italian Society of Medical Radiology 2017 | ||
520 | |a Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classified according to PI-RADS score v2. All target lesions underwent US/mp-MRI fusion biopsy and prostatic sampling was completed by US-guided systematic random 12-core biopsies. Histological analysis and Gleason score were established for all the samples, both target lesions defined by mp-MRI, and random biopsies. PI-RADS score was correlated with the histological results, divided in three groups (benign tissue, atypia and carcinoma) and with Gleason groups, divided in four categories considering the new Grading system of the ISUP 2014, using t test. Multivariate analysis was used to correlate PI-RADS and Gleason categories to PSA level and abnormalities axial diameter. When the random core biopsies showed carcinoma (mp-MRI false-negatives), PSA value and lesions Gleason median value were compared with those of carcinomas identified by mp-MRI (true-positives), using t test. Results There was statistically significant difference between PI-RADS score in carcinoma, atypia and benign lesions groups (4.41, 3.61 and 3.24, respectively) and between PI-RADS score in Gleason < 7 group and Gleason > 7 group (4.14 and 4.79, respectively). mp-MRI performance was more accurate for lesions > 15 mm and in patients with PSA > 6 ng/ml. In systematic sampling, 130 (11.25%) mp-MRI false-negative were identified. There was no statistic difference in Gleason median value (7.0 vs 7.06) between this group and the mp-MRI true-positives, but a significant lower PSA median value was demonstrated (7.08 vs 7.53 ng/ml). Conclusion mp-MRI remains the imaging modality of choice to identify PCa lesions. Integrating US-guided random sampling with US/mp-MRI fusion target lesions sampling, 3.49% of false-negative were identified. | ||
650 | 4 | |a Prostate cancer lesions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Prostate mp-MRI |7 (dpeaa)DE-He213 | |
650 | 4 | |a PI-RADS score |7 (dpeaa)DE-He213 | |
650 | 4 | |a mp-MRI/US fusion biopsy |7 (dpeaa)DE-He213 | |
650 | 4 | |a US random core biopsy |7 (dpeaa)DE-He213 | |
700 | 1 | |a Santucci, Domiziana |4 aut | |
700 | 1 | |a Greco, Federico |4 aut | |
700 | 1 | |a Frauenfelder, Giulia |4 aut | |
700 | 1 | |a Giacobbe, Viola |4 aut | |
700 | 1 | |a Muto, Giovanni |4 aut | |
700 | 1 | |a Zobel, Bruno Beomonte |4 aut | |
700 | 1 | |a Grasso, Rosario Francesco |4 aut | |
773 | 0 | 8 | |i Enthalten in |t La Radiologia medica |d Milan : Springer Milan, 2006 |g 123(2017), 2 vom: 10. Okt., Seite 143-152 |w (DE-627)50900623X |w (DE-600)2225828-0 |x 1826-6983 |7 nnns |
773 | 1 | 8 | |g volume:123 |g year:2017 |g number:2 |g day:10 |g month:10 |g pages:143-152 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11547-017-0814-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 123 |j 2017 |e 2 |b 10 |c 10 |h 143-152 |
author_variant |
e f ef d s ds f g fg g f gf v g vg g m gm b b z bb bbz r f g rf rfg |
---|---|
matchkey_str |
article:18266983:2017----::nlssfitlgclidnsbandobnnummiuinuddipisihytmtcsipisprrlip |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s11547-017-0814-y doi (DE-627)SPR020690266 (SPR)s11547-017-0814-y-e DE-627 ger DE-627 rakwb eng Faiella, Eliodoro verfasserin aut Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Italian Society of Medical Radiology 2017 Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classified according to PI-RADS score v2. All target lesions underwent US/mp-MRI fusion biopsy and prostatic sampling was completed by US-guided systematic random 12-core biopsies. Histological analysis and Gleason score were established for all the samples, both target lesions defined by mp-MRI, and random biopsies. PI-RADS score was correlated with the histological results, divided in three groups (benign tissue, atypia and carcinoma) and with Gleason groups, divided in four categories considering the new Grading system of the ISUP 2014, using t test. Multivariate analysis was used to correlate PI-RADS and Gleason categories to PSA level and abnormalities axial diameter. When the random core biopsies showed carcinoma (mp-MRI false-negatives), PSA value and lesions Gleason median value were compared with those of carcinomas identified by mp-MRI (true-positives), using t test. Results There was statistically significant difference between PI-RADS score in carcinoma, atypia and benign lesions groups (4.41, 3.61 and 3.24, respectively) and between PI-RADS score in Gleason < 7 group and Gleason > 7 group (4.14 and 4.79, respectively). mp-MRI performance was more accurate for lesions > 15 mm and in patients with PSA > 6 ng/ml. In systematic sampling, 130 (11.25%) mp-MRI false-negative were identified. There was no statistic difference in Gleason median value (7.0 vs 7.06) between this group and the mp-MRI true-positives, but a significant lower PSA median value was demonstrated (7.08 vs 7.53 ng/ml). Conclusion mp-MRI remains the imaging modality of choice to identify PCa lesions. Integrating US-guided random sampling with US/mp-MRI fusion target lesions sampling, 3.49% of false-negative were identified. Prostate cancer lesions (dpeaa)DE-He213 Prostate mp-MRI (dpeaa)DE-He213 PI-RADS score (dpeaa)DE-He213 mp-MRI/US fusion biopsy (dpeaa)DE-He213 US random core biopsy (dpeaa)DE-He213 Santucci, Domiziana aut Greco, Federico aut Frauenfelder, Giulia aut Giacobbe, Viola aut Muto, Giovanni aut Zobel, Bruno Beomonte aut Grasso, Rosario Francesco aut Enthalten in La Radiologia medica Milan : Springer Milan, 2006 123(2017), 2 vom: 10. Okt., Seite 143-152 (DE-627)50900623X (DE-600)2225828-0 1826-6983 nnns volume:123 year:2017 number:2 day:10 month:10 pages:143-152 https://dx.doi.org/10.1007/s11547-017-0814-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 123 2017 2 10 10 143-152 |
spelling |
10.1007/s11547-017-0814-y doi (DE-627)SPR020690266 (SPR)s11547-017-0814-y-e DE-627 ger DE-627 rakwb eng Faiella, Eliodoro verfasserin aut Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Italian Society of Medical Radiology 2017 Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classified according to PI-RADS score v2. All target lesions underwent US/mp-MRI fusion biopsy and prostatic sampling was completed by US-guided systematic random 12-core biopsies. Histological analysis and Gleason score were established for all the samples, both target lesions defined by mp-MRI, and random biopsies. PI-RADS score was correlated with the histological results, divided in three groups (benign tissue, atypia and carcinoma) and with Gleason groups, divided in four categories considering the new Grading system of the ISUP 2014, using t test. Multivariate analysis was used to correlate PI-RADS and Gleason categories to PSA level and abnormalities axial diameter. When the random core biopsies showed carcinoma (mp-MRI false-negatives), PSA value and lesions Gleason median value were compared with those of carcinomas identified by mp-MRI (true-positives), using t test. Results There was statistically significant difference between PI-RADS score in carcinoma, atypia and benign lesions groups (4.41, 3.61 and 3.24, respectively) and between PI-RADS score in Gleason < 7 group and Gleason > 7 group (4.14 and 4.79, respectively). mp-MRI performance was more accurate for lesions > 15 mm and in patients with PSA > 6 ng/ml. In systematic sampling, 130 (11.25%) mp-MRI false-negative were identified. There was no statistic difference in Gleason median value (7.0 vs 7.06) between this group and the mp-MRI true-positives, but a significant lower PSA median value was demonstrated (7.08 vs 7.53 ng/ml). Conclusion mp-MRI remains the imaging modality of choice to identify PCa lesions. Integrating US-guided random sampling with US/mp-MRI fusion target lesions sampling, 3.49% of false-negative were identified. Prostate cancer lesions (dpeaa)DE-He213 Prostate mp-MRI (dpeaa)DE-He213 PI-RADS score (dpeaa)DE-He213 mp-MRI/US fusion biopsy (dpeaa)DE-He213 US random core biopsy (dpeaa)DE-He213 Santucci, Domiziana aut Greco, Federico aut Frauenfelder, Giulia aut Giacobbe, Viola aut Muto, Giovanni aut Zobel, Bruno Beomonte aut Grasso, Rosario Francesco aut Enthalten in La Radiologia medica Milan : Springer Milan, 2006 123(2017), 2 vom: 10. Okt., Seite 143-152 (DE-627)50900623X (DE-600)2225828-0 1826-6983 nnns volume:123 year:2017 number:2 day:10 month:10 pages:143-152 https://dx.doi.org/10.1007/s11547-017-0814-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 123 2017 2 10 10 143-152 |
allfields_unstemmed |
10.1007/s11547-017-0814-y doi (DE-627)SPR020690266 (SPR)s11547-017-0814-y-e DE-627 ger DE-627 rakwb eng Faiella, Eliodoro verfasserin aut Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Italian Society of Medical Radiology 2017 Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classified according to PI-RADS score v2. All target lesions underwent US/mp-MRI fusion biopsy and prostatic sampling was completed by US-guided systematic random 12-core biopsies. Histological analysis and Gleason score were established for all the samples, both target lesions defined by mp-MRI, and random biopsies. PI-RADS score was correlated with the histological results, divided in three groups (benign tissue, atypia and carcinoma) and with Gleason groups, divided in four categories considering the new Grading system of the ISUP 2014, using t test. Multivariate analysis was used to correlate PI-RADS and Gleason categories to PSA level and abnormalities axial diameter. When the random core biopsies showed carcinoma (mp-MRI false-negatives), PSA value and lesions Gleason median value were compared with those of carcinomas identified by mp-MRI (true-positives), using t test. Results There was statistically significant difference between PI-RADS score in carcinoma, atypia and benign lesions groups (4.41, 3.61 and 3.24, respectively) and between PI-RADS score in Gleason < 7 group and Gleason > 7 group (4.14 and 4.79, respectively). mp-MRI performance was more accurate for lesions > 15 mm and in patients with PSA > 6 ng/ml. In systematic sampling, 130 (11.25%) mp-MRI false-negative were identified. There was no statistic difference in Gleason median value (7.0 vs 7.06) between this group and the mp-MRI true-positives, but a significant lower PSA median value was demonstrated (7.08 vs 7.53 ng/ml). Conclusion mp-MRI remains the imaging modality of choice to identify PCa lesions. Integrating US-guided random sampling with US/mp-MRI fusion target lesions sampling, 3.49% of false-negative were identified. Prostate cancer lesions (dpeaa)DE-He213 Prostate mp-MRI (dpeaa)DE-He213 PI-RADS score (dpeaa)DE-He213 mp-MRI/US fusion biopsy (dpeaa)DE-He213 US random core biopsy (dpeaa)DE-He213 Santucci, Domiziana aut Greco, Federico aut Frauenfelder, Giulia aut Giacobbe, Viola aut Muto, Giovanni aut Zobel, Bruno Beomonte aut Grasso, Rosario Francesco aut Enthalten in La Radiologia medica Milan : Springer Milan, 2006 123(2017), 2 vom: 10. Okt., Seite 143-152 (DE-627)50900623X (DE-600)2225828-0 1826-6983 nnns volume:123 year:2017 number:2 day:10 month:10 pages:143-152 https://dx.doi.org/10.1007/s11547-017-0814-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 123 2017 2 10 10 143-152 |
allfieldsGer |
10.1007/s11547-017-0814-y doi (DE-627)SPR020690266 (SPR)s11547-017-0814-y-e DE-627 ger DE-627 rakwb eng Faiella, Eliodoro verfasserin aut Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Italian Society of Medical Radiology 2017 Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classified according to PI-RADS score v2. All target lesions underwent US/mp-MRI fusion biopsy and prostatic sampling was completed by US-guided systematic random 12-core biopsies. Histological analysis and Gleason score were established for all the samples, both target lesions defined by mp-MRI, and random biopsies. PI-RADS score was correlated with the histological results, divided in three groups (benign tissue, atypia and carcinoma) and with Gleason groups, divided in four categories considering the new Grading system of the ISUP 2014, using t test. Multivariate analysis was used to correlate PI-RADS and Gleason categories to PSA level and abnormalities axial diameter. When the random core biopsies showed carcinoma (mp-MRI false-negatives), PSA value and lesions Gleason median value were compared with those of carcinomas identified by mp-MRI (true-positives), using t test. Results There was statistically significant difference between PI-RADS score in carcinoma, atypia and benign lesions groups (4.41, 3.61 and 3.24, respectively) and between PI-RADS score in Gleason < 7 group and Gleason > 7 group (4.14 and 4.79, respectively). mp-MRI performance was more accurate for lesions > 15 mm and in patients with PSA > 6 ng/ml. In systematic sampling, 130 (11.25%) mp-MRI false-negative were identified. There was no statistic difference in Gleason median value (7.0 vs 7.06) between this group and the mp-MRI true-positives, but a significant lower PSA median value was demonstrated (7.08 vs 7.53 ng/ml). Conclusion mp-MRI remains the imaging modality of choice to identify PCa lesions. Integrating US-guided random sampling with US/mp-MRI fusion target lesions sampling, 3.49% of false-negative were identified. Prostate cancer lesions (dpeaa)DE-He213 Prostate mp-MRI (dpeaa)DE-He213 PI-RADS score (dpeaa)DE-He213 mp-MRI/US fusion biopsy (dpeaa)DE-He213 US random core biopsy (dpeaa)DE-He213 Santucci, Domiziana aut Greco, Federico aut Frauenfelder, Giulia aut Giacobbe, Viola aut Muto, Giovanni aut Zobel, Bruno Beomonte aut Grasso, Rosario Francesco aut Enthalten in La Radiologia medica Milan : Springer Milan, 2006 123(2017), 2 vom: 10. Okt., Seite 143-152 (DE-627)50900623X (DE-600)2225828-0 1826-6983 nnns volume:123 year:2017 number:2 day:10 month:10 pages:143-152 https://dx.doi.org/10.1007/s11547-017-0814-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 123 2017 2 10 10 143-152 |
allfieldsSound |
10.1007/s11547-017-0814-y doi (DE-627)SPR020690266 (SPR)s11547-017-0814-y-e DE-627 ger DE-627 rakwb eng Faiella, Eliodoro verfasserin aut Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Italian Society of Medical Radiology 2017 Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classified according to PI-RADS score v2. All target lesions underwent US/mp-MRI fusion biopsy and prostatic sampling was completed by US-guided systematic random 12-core biopsies. Histological analysis and Gleason score were established for all the samples, both target lesions defined by mp-MRI, and random biopsies. PI-RADS score was correlated with the histological results, divided in three groups (benign tissue, atypia and carcinoma) and with Gleason groups, divided in four categories considering the new Grading system of the ISUP 2014, using t test. Multivariate analysis was used to correlate PI-RADS and Gleason categories to PSA level and abnormalities axial diameter. When the random core biopsies showed carcinoma (mp-MRI false-negatives), PSA value and lesions Gleason median value were compared with those of carcinomas identified by mp-MRI (true-positives), using t test. Results There was statistically significant difference between PI-RADS score in carcinoma, atypia and benign lesions groups (4.41, 3.61 and 3.24, respectively) and between PI-RADS score in Gleason < 7 group and Gleason > 7 group (4.14 and 4.79, respectively). mp-MRI performance was more accurate for lesions > 15 mm and in patients with PSA > 6 ng/ml. In systematic sampling, 130 (11.25%) mp-MRI false-negative were identified. There was no statistic difference in Gleason median value (7.0 vs 7.06) between this group and the mp-MRI true-positives, but a significant lower PSA median value was demonstrated (7.08 vs 7.53 ng/ml). Conclusion mp-MRI remains the imaging modality of choice to identify PCa lesions. Integrating US-guided random sampling with US/mp-MRI fusion target lesions sampling, 3.49% of false-negative were identified. Prostate cancer lesions (dpeaa)DE-He213 Prostate mp-MRI (dpeaa)DE-He213 PI-RADS score (dpeaa)DE-He213 mp-MRI/US fusion biopsy (dpeaa)DE-He213 US random core biopsy (dpeaa)DE-He213 Santucci, Domiziana aut Greco, Federico aut Frauenfelder, Giulia aut Giacobbe, Viola aut Muto, Giovanni aut Zobel, Bruno Beomonte aut Grasso, Rosario Francesco aut Enthalten in La Radiologia medica Milan : Springer Milan, 2006 123(2017), 2 vom: 10. Okt., Seite 143-152 (DE-627)50900623X (DE-600)2225828-0 1826-6983 nnns volume:123 year:2017 number:2 day:10 month:10 pages:143-152 https://dx.doi.org/10.1007/s11547-017-0814-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 123 2017 2 10 10 143-152 |
language |
English |
source |
Enthalten in La Radiologia medica 123(2017), 2 vom: 10. Okt., Seite 143-152 volume:123 year:2017 number:2 day:10 month:10 pages:143-152 |
sourceStr |
Enthalten in La Radiologia medica 123(2017), 2 vom: 10. Okt., Seite 143-152 volume:123 year:2017 number:2 day:10 month:10 pages:143-152 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Prostate cancer lesions Prostate mp-MRI PI-RADS score mp-MRI/US fusion biopsy US random core biopsy |
isfreeaccess_bool |
false |
container_title |
La Radiologia medica |
authorswithroles_txt_mv |
Faiella, Eliodoro @@aut@@ Santucci, Domiziana @@aut@@ Greco, Federico @@aut@@ Frauenfelder, Giulia @@aut@@ Giacobbe, Viola @@aut@@ Muto, Giovanni @@aut@@ Zobel, Bruno Beomonte @@aut@@ Grasso, Rosario Francesco @@aut@@ |
publishDateDaySort_date |
2017-10-10T00:00:00Z |
hierarchy_top_id |
50900623X |
id |
SPR020690266 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR020690266</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519200821.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11547-017-0814-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR020690266</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11547-017-0814-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faiella, Eliodoro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Italian Society of Medical Radiology 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classified according to PI-RADS score v2. All target lesions underwent US/mp-MRI fusion biopsy and prostatic sampling was completed by US-guided systematic random 12-core biopsies. Histological analysis and Gleason score were established for all the samples, both target lesions defined by mp-MRI, and random biopsies. PI-RADS score was correlated with the histological results, divided in three groups (benign tissue, atypia and carcinoma) and with Gleason groups, divided in four categories considering the new Grading system of the ISUP 2014, using t test. Multivariate analysis was used to correlate PI-RADS and Gleason categories to PSA level and abnormalities axial diameter. When the random core biopsies showed carcinoma (mp-MRI false-negatives), PSA value and lesions Gleason median value were compared with those of carcinomas identified by mp-MRI (true-positives), using t test. Results There was statistically significant difference between PI-RADS score in carcinoma, atypia and benign lesions groups (4.41, 3.61 and 3.24, respectively) and between PI-RADS score in Gleason < 7 group and Gleason > 7 group (4.14 and 4.79, respectively). mp-MRI performance was more accurate for lesions > 15 mm and in patients with PSA > 6 ng/ml. In systematic sampling, 130 (11.25%) mp-MRI false-negative were identified. There was no statistic difference in Gleason median value (7.0 vs 7.06) between this group and the mp-MRI true-positives, but a significant lower PSA median value was demonstrated (7.08 vs 7.53 ng/ml). Conclusion mp-MRI remains the imaging modality of choice to identify PCa lesions. Integrating US-guided random sampling with US/mp-MRI fusion target lesions sampling, 3.49% of false-negative were identified.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate cancer lesions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate mp-MRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PI-RADS score</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mp-MRI/US fusion biopsy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">US random core biopsy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santucci, Domiziana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Greco, Federico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frauenfelder, Giulia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giacobbe, Viola</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muto, Giovanni</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zobel, Bruno Beomonte</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grasso, Rosario Francesco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">La Radiologia medica</subfield><subfield code="d">Milan : Springer Milan, 2006</subfield><subfield code="g">123(2017), 2 vom: 10. Okt., Seite 143-152</subfield><subfield code="w">(DE-627)50900623X</subfield><subfield code="w">(DE-600)2225828-0</subfield><subfield code="x">1826-6983</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:123</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">day:10</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:143-152</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11547-017-0814-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">123</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="b">10</subfield><subfield code="c">10</subfield><subfield code="h">143-152</subfield></datafield></record></collection>
|
author |
Faiella, Eliodoro |
spellingShingle |
Faiella, Eliodoro misc Prostate cancer lesions misc Prostate mp-MRI misc PI-RADS score misc mp-MRI/US fusion biopsy misc US random core biopsy Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative |
authorStr |
Faiella, Eliodoro |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)50900623X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1826-6983 |
topic_title |
Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative Prostate cancer lesions (dpeaa)DE-He213 Prostate mp-MRI (dpeaa)DE-He213 PI-RADS score (dpeaa)DE-He213 mp-MRI/US fusion biopsy (dpeaa)DE-He213 US random core biopsy (dpeaa)DE-He213 |
topic |
misc Prostate cancer lesions misc Prostate mp-MRI misc PI-RADS score misc mp-MRI/US fusion biopsy misc US random core biopsy |
topic_unstemmed |
misc Prostate cancer lesions misc Prostate mp-MRI misc PI-RADS score misc mp-MRI/US fusion biopsy misc US random core biopsy |
topic_browse |
misc Prostate cancer lesions misc Prostate mp-MRI misc PI-RADS score misc mp-MRI/US fusion biopsy misc US random core biopsy |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
La Radiologia medica |
hierarchy_parent_id |
50900623X |
hierarchy_top_title |
La Radiologia medica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)50900623X (DE-600)2225828-0 |
title |
Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative |
ctrlnum |
(DE-627)SPR020690266 (SPR)s11547-017-0814-y-e |
title_full |
Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative |
author_sort |
Faiella, Eliodoro |
journal |
La Radiologia medica |
journalStr |
La Radiologia medica |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
143 |
author_browse |
Faiella, Eliodoro Santucci, Domiziana Greco, Federico Frauenfelder, Giulia Giacobbe, Viola Muto, Giovanni Zobel, Bruno Beomonte Grasso, Rosario Francesco |
container_volume |
123 |
format_se |
Elektronische Aufsätze |
author-letter |
Faiella, Eliodoro |
doi_str_mv |
10.1007/s11547-017-0814-y |
title_sort |
analysis of histological findings obtained combining us/mp-mri fusion-guided biopsies with systematic us biopsies: mp-mri role in prostate cancer detection and false negative |
title_auth |
Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative |
abstract |
Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classified according to PI-RADS score v2. All target lesions underwent US/mp-MRI fusion biopsy and prostatic sampling was completed by US-guided systematic random 12-core biopsies. Histological analysis and Gleason score were established for all the samples, both target lesions defined by mp-MRI, and random biopsies. PI-RADS score was correlated with the histological results, divided in three groups (benign tissue, atypia and carcinoma) and with Gleason groups, divided in four categories considering the new Grading system of the ISUP 2014, using t test. Multivariate analysis was used to correlate PI-RADS and Gleason categories to PSA level and abnormalities axial diameter. When the random core biopsies showed carcinoma (mp-MRI false-negatives), PSA value and lesions Gleason median value were compared with those of carcinomas identified by mp-MRI (true-positives), using t test. Results There was statistically significant difference between PI-RADS score in carcinoma, atypia and benign lesions groups (4.41, 3.61 and 3.24, respectively) and between PI-RADS score in Gleason < 7 group and Gleason > 7 group (4.14 and 4.79, respectively). mp-MRI performance was more accurate for lesions > 15 mm and in patients with PSA > 6 ng/ml. In systematic sampling, 130 (11.25%) mp-MRI false-negative were identified. There was no statistic difference in Gleason median value (7.0 vs 7.06) between this group and the mp-MRI true-positives, but a significant lower PSA median value was demonstrated (7.08 vs 7.53 ng/ml). Conclusion mp-MRI remains the imaging modality of choice to identify PCa lesions. Integrating US-guided random sampling with US/mp-MRI fusion target lesions sampling, 3.49% of false-negative were identified. © Italian Society of Medical Radiology 2017 |
abstractGer |
Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classified according to PI-RADS score v2. All target lesions underwent US/mp-MRI fusion biopsy and prostatic sampling was completed by US-guided systematic random 12-core biopsies. Histological analysis and Gleason score were established for all the samples, both target lesions defined by mp-MRI, and random biopsies. PI-RADS score was correlated with the histological results, divided in three groups (benign tissue, atypia and carcinoma) and with Gleason groups, divided in four categories considering the new Grading system of the ISUP 2014, using t test. Multivariate analysis was used to correlate PI-RADS and Gleason categories to PSA level and abnormalities axial diameter. When the random core biopsies showed carcinoma (mp-MRI false-negatives), PSA value and lesions Gleason median value were compared with those of carcinomas identified by mp-MRI (true-positives), using t test. Results There was statistically significant difference between PI-RADS score in carcinoma, atypia and benign lesions groups (4.41, 3.61 and 3.24, respectively) and between PI-RADS score in Gleason < 7 group and Gleason > 7 group (4.14 and 4.79, respectively). mp-MRI performance was more accurate for lesions > 15 mm and in patients with PSA > 6 ng/ml. In systematic sampling, 130 (11.25%) mp-MRI false-negative were identified. There was no statistic difference in Gleason median value (7.0 vs 7.06) between this group and the mp-MRI true-positives, but a significant lower PSA median value was demonstrated (7.08 vs 7.53 ng/ml). Conclusion mp-MRI remains the imaging modality of choice to identify PCa lesions. Integrating US-guided random sampling with US/mp-MRI fusion target lesions sampling, 3.49% of false-negative were identified. © Italian Society of Medical Radiology 2017 |
abstract_unstemmed |
Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classified according to PI-RADS score v2. All target lesions underwent US/mp-MRI fusion biopsy and prostatic sampling was completed by US-guided systematic random 12-core biopsies. Histological analysis and Gleason score were established for all the samples, both target lesions defined by mp-MRI, and random biopsies. PI-RADS score was correlated with the histological results, divided in three groups (benign tissue, atypia and carcinoma) and with Gleason groups, divided in four categories considering the new Grading system of the ISUP 2014, using t test. Multivariate analysis was used to correlate PI-RADS and Gleason categories to PSA level and abnormalities axial diameter. When the random core biopsies showed carcinoma (mp-MRI false-negatives), PSA value and lesions Gleason median value were compared with those of carcinomas identified by mp-MRI (true-positives), using t test. Results There was statistically significant difference between PI-RADS score in carcinoma, atypia and benign lesions groups (4.41, 3.61 and 3.24, respectively) and between PI-RADS score in Gleason < 7 group and Gleason > 7 group (4.14 and 4.79, respectively). mp-MRI performance was more accurate for lesions > 15 mm and in patients with PSA > 6 ng/ml. In systematic sampling, 130 (11.25%) mp-MRI false-negative were identified. There was no statistic difference in Gleason median value (7.0 vs 7.06) between this group and the mp-MRI true-positives, but a significant lower PSA median value was demonstrated (7.08 vs 7.53 ng/ml). Conclusion mp-MRI remains the imaging modality of choice to identify PCa lesions. Integrating US-guided random sampling with US/mp-MRI fusion target lesions sampling, 3.49% of false-negative were identified. © Italian Society of Medical Radiology 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
2 |
title_short |
Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative |
url |
https://dx.doi.org/10.1007/s11547-017-0814-y |
remote_bool |
true |
author2 |
Santucci, Domiziana Greco, Federico Frauenfelder, Giulia Giacobbe, Viola Muto, Giovanni Zobel, Bruno Beomonte Grasso, Rosario Francesco |
author2Str |
Santucci, Domiziana Greco, Federico Frauenfelder, Giulia Giacobbe, Viola Muto, Giovanni Zobel, Bruno Beomonte Grasso, Rosario Francesco |
ppnlink |
50900623X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11547-017-0814-y |
up_date |
2024-07-03T17:37:41.463Z |
_version_ |
1803580354298118145 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR020690266</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519200821.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11547-017-0814-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR020690266</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11547-017-0814-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faiella, Eliodoro</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of histological findings obtained combining US/mp-MRI fusion-guided biopsies with systematic US biopsies: mp-MRI role in prostate cancer detection and false negative</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Italian Society of Medical Radiology 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Aims and objectives To evaluate the diagnostic accuracy of mp-MRI correlating US/mp-MRI fusion-guided biopsy with systematic random US-guided biopsy in prostate cancer diagnosis. Materials and methods 137 suspected prostatic abnormalities were identified on mp-MRI (1.5T) in 96 patients and classified according to PI-RADS score v2. All target lesions underwent US/mp-MRI fusion biopsy and prostatic sampling was completed by US-guided systematic random 12-core biopsies. Histological analysis and Gleason score were established for all the samples, both target lesions defined by mp-MRI, and random biopsies. PI-RADS score was correlated with the histological results, divided in three groups (benign tissue, atypia and carcinoma) and with Gleason groups, divided in four categories considering the new Grading system of the ISUP 2014, using t test. Multivariate analysis was used to correlate PI-RADS and Gleason categories to PSA level and abnormalities axial diameter. When the random core biopsies showed carcinoma (mp-MRI false-negatives), PSA value and lesions Gleason median value were compared with those of carcinomas identified by mp-MRI (true-positives), using t test. Results There was statistically significant difference between PI-RADS score in carcinoma, atypia and benign lesions groups (4.41, 3.61 and 3.24, respectively) and between PI-RADS score in Gleason < 7 group and Gleason > 7 group (4.14 and 4.79, respectively). mp-MRI performance was more accurate for lesions > 15 mm and in patients with PSA > 6 ng/ml. In systematic sampling, 130 (11.25%) mp-MRI false-negative were identified. There was no statistic difference in Gleason median value (7.0 vs 7.06) between this group and the mp-MRI true-positives, but a significant lower PSA median value was demonstrated (7.08 vs 7.53 ng/ml). Conclusion mp-MRI remains the imaging modality of choice to identify PCa lesions. Integrating US-guided random sampling with US/mp-MRI fusion target lesions sampling, 3.49% of false-negative were identified.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate cancer lesions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prostate mp-MRI</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PI-RADS score</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mp-MRI/US fusion biopsy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">US random core biopsy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santucci, Domiziana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Greco, Federico</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Frauenfelder, Giulia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Giacobbe, Viola</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Muto, Giovanni</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zobel, Bruno Beomonte</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grasso, Rosario Francesco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">La Radiologia medica</subfield><subfield code="d">Milan : Springer Milan, 2006</subfield><subfield code="g">123(2017), 2 vom: 10. Okt., Seite 143-152</subfield><subfield code="w">(DE-627)50900623X</subfield><subfield code="w">(DE-600)2225828-0</subfield><subfield code="x">1826-6983</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:123</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:2</subfield><subfield code="g">day:10</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:143-152</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11547-017-0814-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">123</subfield><subfield code="j">2017</subfield><subfield code="e">2</subfield><subfield code="b">10</subfield><subfield code="c">10</subfield><subfield code="h">143-152</subfield></datafield></record></collection>
|
score |
7.4018145 |