Discrimination of Acacia seeds at species and subspecies levels using an image analyzer
Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp....
Ausführliche Beschreibung
Autor*in: |
Sivakumar, V. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Forestry studies in China - Beijing : BFU, 1999, 15(2013), 4 vom: Dez., Seite 253-260 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2013 ; number:4 ; month:12 ; pages:253-260 |
Links: |
---|
DOI / URN: |
10.1007/s11632-013-0414-4 |
---|
Katalog-ID: |
SPR021283907 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR021283907 | ||
003 | DE-627 | ||
005 | 20230331075507.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11632-013-0414-4 |2 doi | |
035 | |a (DE-627)SPR021283907 | ||
035 | |a (SPR)s11632-013-0414-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Sivakumar, V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Discrimination of Acacia seeds at species and subspecies levels using an image analyzer |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013 | ||
520 | |a Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias. | ||
650 | 4 | |a image analyzer |7 (dpeaa)DE-He213 | |
650 | 4 | |a discriminant analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a seed identification |7 (dpeaa)DE-He213 | |
700 | 1 | |a Anandalakshmi, R. |4 aut | |
700 | 1 | |a Warrier, Rekha R. |4 aut | |
700 | 1 | |a Singh, B. G. |4 aut | |
700 | 1 | |a Tigabu, M. |4 aut | |
700 | 1 | |a Nagarajan, B. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Forestry studies in China |d Beijing : BFU, 1999 |g 15(2013), 4 vom: Dez., Seite 253-260 |w (DE-627)518632393 |w (DE-600)2253236-5 |x 1993-0372 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2013 |g number:4 |g month:12 |g pages:253-260 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11632-013-0414-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_121 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_374 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2700 | ||
912 | |a GBV_ILN_2817 | ||
951 | |a AR | ||
952 | |d 15 |j 2013 |e 4 |c 12 |h 253-260 |
author_variant |
v s vs r a ra r r w rr rrw b g s bg bgs m t mt b n bn |
---|---|
matchkey_str |
article:19930372:2013----::iciiainfccaedaseisnsbpcelvl |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s11632-013-0414-4 doi (DE-627)SPR021283907 (SPR)s11632-013-0414-4-e DE-627 ger DE-627 rakwb eng Sivakumar, V. verfasserin aut Discrimination of Acacia seeds at species and subspecies levels using an image analyzer 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013 Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias. image analyzer (dpeaa)DE-He213 discriminant analysis (dpeaa)DE-He213 seed identification (dpeaa)DE-He213 Anandalakshmi, R. aut Warrier, Rekha R. aut Singh, B. G. aut Tigabu, M. aut Nagarajan, B. aut Enthalten in Forestry studies in China Beijing : BFU, 1999 15(2013), 4 vom: Dez., Seite 253-260 (DE-627)518632393 (DE-600)2253236-5 1993-0372 nnns volume:15 year:2013 number:4 month:12 pages:253-260 https://dx.doi.org/10.1007/s11632-013-0414-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_161 GBV_ILN_293 GBV_ILN_374 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2700 GBV_ILN_2817 AR 15 2013 4 12 253-260 |
spelling |
10.1007/s11632-013-0414-4 doi (DE-627)SPR021283907 (SPR)s11632-013-0414-4-e DE-627 ger DE-627 rakwb eng Sivakumar, V. verfasserin aut Discrimination of Acacia seeds at species and subspecies levels using an image analyzer 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013 Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias. image analyzer (dpeaa)DE-He213 discriminant analysis (dpeaa)DE-He213 seed identification (dpeaa)DE-He213 Anandalakshmi, R. aut Warrier, Rekha R. aut Singh, B. G. aut Tigabu, M. aut Nagarajan, B. aut Enthalten in Forestry studies in China Beijing : BFU, 1999 15(2013), 4 vom: Dez., Seite 253-260 (DE-627)518632393 (DE-600)2253236-5 1993-0372 nnns volume:15 year:2013 number:4 month:12 pages:253-260 https://dx.doi.org/10.1007/s11632-013-0414-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_161 GBV_ILN_293 GBV_ILN_374 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2700 GBV_ILN_2817 AR 15 2013 4 12 253-260 |
allfields_unstemmed |
10.1007/s11632-013-0414-4 doi (DE-627)SPR021283907 (SPR)s11632-013-0414-4-e DE-627 ger DE-627 rakwb eng Sivakumar, V. verfasserin aut Discrimination of Acacia seeds at species and subspecies levels using an image analyzer 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013 Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias. image analyzer (dpeaa)DE-He213 discriminant analysis (dpeaa)DE-He213 seed identification (dpeaa)DE-He213 Anandalakshmi, R. aut Warrier, Rekha R. aut Singh, B. G. aut Tigabu, M. aut Nagarajan, B. aut Enthalten in Forestry studies in China Beijing : BFU, 1999 15(2013), 4 vom: Dez., Seite 253-260 (DE-627)518632393 (DE-600)2253236-5 1993-0372 nnns volume:15 year:2013 number:4 month:12 pages:253-260 https://dx.doi.org/10.1007/s11632-013-0414-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_161 GBV_ILN_293 GBV_ILN_374 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2700 GBV_ILN_2817 AR 15 2013 4 12 253-260 |
allfieldsGer |
10.1007/s11632-013-0414-4 doi (DE-627)SPR021283907 (SPR)s11632-013-0414-4-e DE-627 ger DE-627 rakwb eng Sivakumar, V. verfasserin aut Discrimination of Acacia seeds at species and subspecies levels using an image analyzer 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013 Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias. image analyzer (dpeaa)DE-He213 discriminant analysis (dpeaa)DE-He213 seed identification (dpeaa)DE-He213 Anandalakshmi, R. aut Warrier, Rekha R. aut Singh, B. G. aut Tigabu, M. aut Nagarajan, B. aut Enthalten in Forestry studies in China Beijing : BFU, 1999 15(2013), 4 vom: Dez., Seite 253-260 (DE-627)518632393 (DE-600)2253236-5 1993-0372 nnns volume:15 year:2013 number:4 month:12 pages:253-260 https://dx.doi.org/10.1007/s11632-013-0414-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_161 GBV_ILN_293 GBV_ILN_374 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2700 GBV_ILN_2817 AR 15 2013 4 12 253-260 |
allfieldsSound |
10.1007/s11632-013-0414-4 doi (DE-627)SPR021283907 (SPR)s11632-013-0414-4-e DE-627 ger DE-627 rakwb eng Sivakumar, V. verfasserin aut Discrimination of Acacia seeds at species and subspecies levels using an image analyzer 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013 Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias. image analyzer (dpeaa)DE-He213 discriminant analysis (dpeaa)DE-He213 seed identification (dpeaa)DE-He213 Anandalakshmi, R. aut Warrier, Rekha R. aut Singh, B. G. aut Tigabu, M. aut Nagarajan, B. aut Enthalten in Forestry studies in China Beijing : BFU, 1999 15(2013), 4 vom: Dez., Seite 253-260 (DE-627)518632393 (DE-600)2253236-5 1993-0372 nnns volume:15 year:2013 number:4 month:12 pages:253-260 https://dx.doi.org/10.1007/s11632-013-0414-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_161 GBV_ILN_293 GBV_ILN_374 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2700 GBV_ILN_2817 AR 15 2013 4 12 253-260 |
language |
English |
source |
Enthalten in Forestry studies in China 15(2013), 4 vom: Dez., Seite 253-260 volume:15 year:2013 number:4 month:12 pages:253-260 |
sourceStr |
Enthalten in Forestry studies in China 15(2013), 4 vom: Dez., Seite 253-260 volume:15 year:2013 number:4 month:12 pages:253-260 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
image analyzer discriminant analysis seed identification |
isfreeaccess_bool |
false |
container_title |
Forestry studies in China |
authorswithroles_txt_mv |
Sivakumar, V. @@aut@@ Anandalakshmi, R. @@aut@@ Warrier, Rekha R. @@aut@@ Singh, B. G. @@aut@@ Tigabu, M. @@aut@@ Nagarajan, B. @@aut@@ |
publishDateDaySort_date |
2013-12-01T00:00:00Z |
hierarchy_top_id |
518632393 |
id |
SPR021283907 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR021283907</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331075507.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11632-013-0414-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR021283907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11632-013-0414-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sivakumar, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrimination of Acacia seeds at species and subspecies levels using an image analyzer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image analyzer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discriminant analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seed identification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anandalakshmi, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Warrier, Rekha R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, B. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tigabu, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagarajan, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Forestry studies in China</subfield><subfield code="d">Beijing : BFU, 1999</subfield><subfield code="g">15(2013), 4 vom: Dez., Seite 253-260</subfield><subfield code="w">(DE-627)518632393</subfield><subfield code="w">(DE-600)2253236-5</subfield><subfield code="x">1993-0372</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:253-260</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11632-013-0414-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2817</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2013</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">253-260</subfield></datafield></record></collection>
|
author |
Sivakumar, V. |
spellingShingle |
Sivakumar, V. misc image analyzer misc discriminant analysis misc seed identification Discrimination of Acacia seeds at species and subspecies levels using an image analyzer |
authorStr |
Sivakumar, V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)518632393 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1993-0372 |
topic_title |
Discrimination of Acacia seeds at species and subspecies levels using an image analyzer image analyzer (dpeaa)DE-He213 discriminant analysis (dpeaa)DE-He213 seed identification (dpeaa)DE-He213 |
topic |
misc image analyzer misc discriminant analysis misc seed identification |
topic_unstemmed |
misc image analyzer misc discriminant analysis misc seed identification |
topic_browse |
misc image analyzer misc discriminant analysis misc seed identification |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Forestry studies in China |
hierarchy_parent_id |
518632393 |
hierarchy_top_title |
Forestry studies in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)518632393 (DE-600)2253236-5 |
title |
Discrimination of Acacia seeds at species and subspecies levels using an image analyzer |
ctrlnum |
(DE-627)SPR021283907 (SPR)s11632-013-0414-4-e |
title_full |
Discrimination of Acacia seeds at species and subspecies levels using an image analyzer |
author_sort |
Sivakumar, V. |
journal |
Forestry studies in China |
journalStr |
Forestry studies in China |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
253 |
author_browse |
Sivakumar, V. Anandalakshmi, R. Warrier, Rekha R. Singh, B. G. Tigabu, M. Nagarajan, B. |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Sivakumar, V. |
doi_str_mv |
10.1007/s11632-013-0414-4 |
title_sort |
discrimination of acacia seeds at species and subspecies levels using an image analyzer |
title_auth |
Discrimination of Acacia seeds at species and subspecies levels using an image analyzer |
abstract |
Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias. © Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013 |
abstractGer |
Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias. © Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013 |
abstract_unstemmed |
Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias. © Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_32 GBV_ILN_40 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_110 GBV_ILN_120 GBV_ILN_121 GBV_ILN_161 GBV_ILN_293 GBV_ILN_374 GBV_ILN_702 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2014 GBV_ILN_2700 GBV_ILN_2817 |
container_issue |
4 |
title_short |
Discrimination of Acacia seeds at species and subspecies levels using an image analyzer |
url |
https://dx.doi.org/10.1007/s11632-013-0414-4 |
remote_bool |
true |
author2 |
Anandalakshmi, R. Warrier, Rekha R. Singh, B. G. Tigabu, M. Nagarajan, B. |
author2Str |
Anandalakshmi, R. Warrier, Rekha R. Singh, B. G. Tigabu, M. Nagarajan, B. |
ppnlink |
518632393 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11632-013-0414-4 |
up_date |
2024-07-03T21:35:13.812Z |
_version_ |
1803595298965028864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR021283907</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331075507.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11632-013-0414-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR021283907</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11632-013-0414-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sivakumar, V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Discrimination of Acacia seeds at species and subspecies levels using an image analyzer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Beijing Forestry University and Springer-Verlag Berlin Heidelberg 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Seeds of Acacia species and subspecies were characterized using an image analyzer and discriminated for the purpose of identification of species, using their seeds. The species considered in the study were Acacia nilotica subsp. indica, A. nilotica subsp. cupressiformis, A. nilotica subsp. tomentosa, A. tortilis subsp. raddiana, A. tortilis subsp. spirocarpa, A. raddiana, A. senegal, A. auriculiformis, A. farnesiana, A. leucophloea, A. mearnsii, A. melanoxylon, A. planifrons and A. mangium. Eight samples each consisting of 25 seeds per species were studied using the image analyzer for physical characteristics of seeds, such as 2D surface area, length, width, perimeter, roundness, aspect ratio and fullness ratio. Discriminant analysis showed that acacias can be discriminated at species and subspecies levels, with 96% accuracy. Exceptions were A. nilotica subsp. tomentosa (75.0%), A. tortilis subsp. spirocarpa (75.0%) and A. raddiana (87.5%) which had relatively low discrimination accuracy. However, discriminant analysis within selected species showed complete recognition of these species except for A. tortilis subsp. spirocarpa, that had still a large overlap with A. leucophloea. The study also revealed that both seed size and shape characteristics were responsible for species discrimination. It can be concluded that rapid analysis of seed size and shape characteristics using image analysis techniques can be used as primary and secondary keys for identification of acacias.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">image analyzer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discriminant analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">seed identification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Anandalakshmi, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Warrier, Rekha R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, B. G.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tigabu, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nagarajan, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Forestry studies in China</subfield><subfield code="d">Beijing : BFU, 1999</subfield><subfield code="g">15(2013), 4 vom: Dez., Seite 253-260</subfield><subfield code="w">(DE-627)518632393</subfield><subfield code="w">(DE-600)2253236-5</subfield><subfield code="x">1993-0372</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:253-260</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11632-013-0414-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_121</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_374</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2700</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2817</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2013</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">253-260</subfield></datafield></record></collection>
|
score |
7.3985558 |