$ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure
Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measu...
Ausführliche Beschreibung
Autor*in: |
Ristova, M. M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2012 |
---|
Schlagwörter: |
---|
Anmerkung: |
© TMS 2012 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of electronic materials - Warrendale, Pa : TMS, 1972, 41(2012), 11 vom: 06. Sept., Seite 3087-3094 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2012 ; number:11 ; day:06 ; month:09 ; pages:3087-3094 |
Links: |
---|
DOI / URN: |
10.1007/s11664-012-2221-4 |
---|
Katalog-ID: |
SPR021500266 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR021500266 | ||
003 | DE-627 | ||
005 | 20230331054923.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2012 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11664-012-2221-4 |2 doi | |
035 | |a (DE-627)SPR021500266 | ||
035 | |a (SPR)s11664-012-2221-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ristova, M. M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a $ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure |
264 | 1 | |c 2012 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © TMS 2012 | ||
520 | |a Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a $ TiO_{2} $ stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, $ TiO_{2} $ films revealed insignificant changes in the optical spectra. The initial sheet resistance of the $ SnO_{2} $:F layer was 14 Ω/sq. The deposition of the top $ TiO_{2} $ layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/$ TiO_{2} $ transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of $ H^{+} $ plasma exposure. Regardless of the $ TiO_{2} $ film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive $ H^{+} $ plasma conditions. In this paper we show that ∼50-nm-thick $ TiO_{2} $ coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure. | ||
650 | 4 | |a TiO |7 (dpeaa)DE-He213 | |
650 | 4 | |a thin-film coating |7 (dpeaa)DE-He213 | |
650 | 4 | |a AFM |7 (dpeaa)DE-He213 | |
650 | 4 | |a XPS |7 (dpeaa)DE-He213 | |
650 | 4 | |a filtered cathodic arc evaporation (FCAE) |7 (dpeaa)DE-He213 | |
650 | 4 | |a transmittance |7 (dpeaa)DE-He213 | |
650 | 4 | |a reflectance |7 (dpeaa)DE-He213 | |
650 | 4 | |a H |7 (dpeaa)DE-He213 | |
650 | 4 | |a radicals |7 (dpeaa)DE-He213 | |
650 | 4 | |a XPS |7 (dpeaa)DE-He213 | |
650 | 4 | |a SEM |7 (dpeaa)DE-He213 | |
650 | 4 | |a AXRD |7 (dpeaa)DE-He213 | |
650 | 4 | |a XRR |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gligorova, A. |4 aut | |
700 | 1 | |a Nasov, I. |4 aut | |
700 | 1 | |a Gracin, D. |4 aut | |
700 | 1 | |a Milun, M. |4 aut | |
700 | 1 | |a Kostadinova-Boskova, H. |4 aut | |
700 | 1 | |a Popeski-Dimovski, R. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of electronic materials |d Warrendale, Pa : TMS, 1972 |g 41(2012), 11 vom: 06. Sept., Seite 3087-3094 |w (DE-627)324918739 |w (DE-600)2032868-0 |x 1543-186X |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2012 |g number:11 |g day:06 |g month:09 |g pages:3087-3094 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11664-012-2221-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4328 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 41 |j 2012 |e 11 |b 06 |c 09 |h 3087-3094 |
author_variant |
m m r mm mmr a g ag i n in d g dg m m mm h k b hkb r p d rpd |
---|---|
matchkey_str |
article:1543186X:2012----::i_caigoso2flsrdcdyitrdahdcreaoainoipoer |
hierarchy_sort_str |
2012 |
publishDate |
2012 |
allfields |
10.1007/s11664-012-2221-4 doi (DE-627)SPR021500266 (SPR)s11664-012-2221-4-e DE-627 ger DE-627 rakwb eng Ristova, M. M. verfasserin aut $ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © TMS 2012 Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a $ TiO_{2} $ stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, $ TiO_{2} $ films revealed insignificant changes in the optical spectra. The initial sheet resistance of the $ SnO_{2} $:F layer was 14 Ω/sq. The deposition of the top $ TiO_{2} $ layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/$ TiO_{2} $ transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of $ H^{+} $ plasma exposure. Regardless of the $ TiO_{2} $ film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive $ H^{+} $ plasma conditions. In this paper we show that ∼50-nm-thick $ TiO_{2} $ coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure. TiO (dpeaa)DE-He213 thin-film coating (dpeaa)DE-He213 AFM (dpeaa)DE-He213 XPS (dpeaa)DE-He213 filtered cathodic arc evaporation (FCAE) (dpeaa)DE-He213 transmittance (dpeaa)DE-He213 reflectance (dpeaa)DE-He213 H (dpeaa)DE-He213 radicals (dpeaa)DE-He213 XPS (dpeaa)DE-He213 SEM (dpeaa)DE-He213 AXRD (dpeaa)DE-He213 XRR (dpeaa)DE-He213 Gligorova, A. aut Nasov, I. aut Gracin, D. aut Milun, M. aut Kostadinova-Boskova, H. aut Popeski-Dimovski, R. aut Enthalten in Journal of electronic materials Warrendale, Pa : TMS, 1972 41(2012), 11 vom: 06. Sept., Seite 3087-3094 (DE-627)324918739 (DE-600)2032868-0 1543-186X nnns volume:41 year:2012 number:11 day:06 month:09 pages:3087-3094 https://dx.doi.org/10.1007/s11664-012-2221-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 41 2012 11 06 09 3087-3094 |
spelling |
10.1007/s11664-012-2221-4 doi (DE-627)SPR021500266 (SPR)s11664-012-2221-4-e DE-627 ger DE-627 rakwb eng Ristova, M. M. verfasserin aut $ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © TMS 2012 Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a $ TiO_{2} $ stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, $ TiO_{2} $ films revealed insignificant changes in the optical spectra. The initial sheet resistance of the $ SnO_{2} $:F layer was 14 Ω/sq. The deposition of the top $ TiO_{2} $ layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/$ TiO_{2} $ transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of $ H^{+} $ plasma exposure. Regardless of the $ TiO_{2} $ film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive $ H^{+} $ plasma conditions. In this paper we show that ∼50-nm-thick $ TiO_{2} $ coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure. TiO (dpeaa)DE-He213 thin-film coating (dpeaa)DE-He213 AFM (dpeaa)DE-He213 XPS (dpeaa)DE-He213 filtered cathodic arc evaporation (FCAE) (dpeaa)DE-He213 transmittance (dpeaa)DE-He213 reflectance (dpeaa)DE-He213 H (dpeaa)DE-He213 radicals (dpeaa)DE-He213 XPS (dpeaa)DE-He213 SEM (dpeaa)DE-He213 AXRD (dpeaa)DE-He213 XRR (dpeaa)DE-He213 Gligorova, A. aut Nasov, I. aut Gracin, D. aut Milun, M. aut Kostadinova-Boskova, H. aut Popeski-Dimovski, R. aut Enthalten in Journal of electronic materials Warrendale, Pa : TMS, 1972 41(2012), 11 vom: 06. Sept., Seite 3087-3094 (DE-627)324918739 (DE-600)2032868-0 1543-186X nnns volume:41 year:2012 number:11 day:06 month:09 pages:3087-3094 https://dx.doi.org/10.1007/s11664-012-2221-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 41 2012 11 06 09 3087-3094 |
allfields_unstemmed |
10.1007/s11664-012-2221-4 doi (DE-627)SPR021500266 (SPR)s11664-012-2221-4-e DE-627 ger DE-627 rakwb eng Ristova, M. M. verfasserin aut $ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © TMS 2012 Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a $ TiO_{2} $ stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, $ TiO_{2} $ films revealed insignificant changes in the optical spectra. The initial sheet resistance of the $ SnO_{2} $:F layer was 14 Ω/sq. The deposition of the top $ TiO_{2} $ layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/$ TiO_{2} $ transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of $ H^{+} $ plasma exposure. Regardless of the $ TiO_{2} $ film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive $ H^{+} $ plasma conditions. In this paper we show that ∼50-nm-thick $ TiO_{2} $ coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure. TiO (dpeaa)DE-He213 thin-film coating (dpeaa)DE-He213 AFM (dpeaa)DE-He213 XPS (dpeaa)DE-He213 filtered cathodic arc evaporation (FCAE) (dpeaa)DE-He213 transmittance (dpeaa)DE-He213 reflectance (dpeaa)DE-He213 H (dpeaa)DE-He213 radicals (dpeaa)DE-He213 XPS (dpeaa)DE-He213 SEM (dpeaa)DE-He213 AXRD (dpeaa)DE-He213 XRR (dpeaa)DE-He213 Gligorova, A. aut Nasov, I. aut Gracin, D. aut Milun, M. aut Kostadinova-Boskova, H. aut Popeski-Dimovski, R. aut Enthalten in Journal of electronic materials Warrendale, Pa : TMS, 1972 41(2012), 11 vom: 06. Sept., Seite 3087-3094 (DE-627)324918739 (DE-600)2032868-0 1543-186X nnns volume:41 year:2012 number:11 day:06 month:09 pages:3087-3094 https://dx.doi.org/10.1007/s11664-012-2221-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 41 2012 11 06 09 3087-3094 |
allfieldsGer |
10.1007/s11664-012-2221-4 doi (DE-627)SPR021500266 (SPR)s11664-012-2221-4-e DE-627 ger DE-627 rakwb eng Ristova, M. M. verfasserin aut $ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © TMS 2012 Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a $ TiO_{2} $ stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, $ TiO_{2} $ films revealed insignificant changes in the optical spectra. The initial sheet resistance of the $ SnO_{2} $:F layer was 14 Ω/sq. The deposition of the top $ TiO_{2} $ layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/$ TiO_{2} $ transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of $ H^{+} $ plasma exposure. Regardless of the $ TiO_{2} $ film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive $ H^{+} $ plasma conditions. In this paper we show that ∼50-nm-thick $ TiO_{2} $ coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure. TiO (dpeaa)DE-He213 thin-film coating (dpeaa)DE-He213 AFM (dpeaa)DE-He213 XPS (dpeaa)DE-He213 filtered cathodic arc evaporation (FCAE) (dpeaa)DE-He213 transmittance (dpeaa)DE-He213 reflectance (dpeaa)DE-He213 H (dpeaa)DE-He213 radicals (dpeaa)DE-He213 XPS (dpeaa)DE-He213 SEM (dpeaa)DE-He213 AXRD (dpeaa)DE-He213 XRR (dpeaa)DE-He213 Gligorova, A. aut Nasov, I. aut Gracin, D. aut Milun, M. aut Kostadinova-Boskova, H. aut Popeski-Dimovski, R. aut Enthalten in Journal of electronic materials Warrendale, Pa : TMS, 1972 41(2012), 11 vom: 06. Sept., Seite 3087-3094 (DE-627)324918739 (DE-600)2032868-0 1543-186X nnns volume:41 year:2012 number:11 day:06 month:09 pages:3087-3094 https://dx.doi.org/10.1007/s11664-012-2221-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 41 2012 11 06 09 3087-3094 |
allfieldsSound |
10.1007/s11664-012-2221-4 doi (DE-627)SPR021500266 (SPR)s11664-012-2221-4-e DE-627 ger DE-627 rakwb eng Ristova, M. M. verfasserin aut $ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure 2012 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © TMS 2012 Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a $ TiO_{2} $ stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, $ TiO_{2} $ films revealed insignificant changes in the optical spectra. The initial sheet resistance of the $ SnO_{2} $:F layer was 14 Ω/sq. The deposition of the top $ TiO_{2} $ layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/$ TiO_{2} $ transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of $ H^{+} $ plasma exposure. Regardless of the $ TiO_{2} $ film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive $ H^{+} $ plasma conditions. In this paper we show that ∼50-nm-thick $ TiO_{2} $ coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure. TiO (dpeaa)DE-He213 thin-film coating (dpeaa)DE-He213 AFM (dpeaa)DE-He213 XPS (dpeaa)DE-He213 filtered cathodic arc evaporation (FCAE) (dpeaa)DE-He213 transmittance (dpeaa)DE-He213 reflectance (dpeaa)DE-He213 H (dpeaa)DE-He213 radicals (dpeaa)DE-He213 XPS (dpeaa)DE-He213 SEM (dpeaa)DE-He213 AXRD (dpeaa)DE-He213 XRR (dpeaa)DE-He213 Gligorova, A. aut Nasov, I. aut Gracin, D. aut Milun, M. aut Kostadinova-Boskova, H. aut Popeski-Dimovski, R. aut Enthalten in Journal of electronic materials Warrendale, Pa : TMS, 1972 41(2012), 11 vom: 06. Sept., Seite 3087-3094 (DE-627)324918739 (DE-600)2032868-0 1543-186X nnns volume:41 year:2012 number:11 day:06 month:09 pages:3087-3094 https://dx.doi.org/10.1007/s11664-012-2221-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 41 2012 11 06 09 3087-3094 |
language |
English |
source |
Enthalten in Journal of electronic materials 41(2012), 11 vom: 06. Sept., Seite 3087-3094 volume:41 year:2012 number:11 day:06 month:09 pages:3087-3094 |
sourceStr |
Enthalten in Journal of electronic materials 41(2012), 11 vom: 06. Sept., Seite 3087-3094 volume:41 year:2012 number:11 day:06 month:09 pages:3087-3094 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
TiO thin-film coating AFM XPS filtered cathodic arc evaporation (FCAE) transmittance reflectance H radicals SEM AXRD XRR |
isfreeaccess_bool |
false |
container_title |
Journal of electronic materials |
authorswithroles_txt_mv |
Ristova, M. M. @@aut@@ Gligorova, A. @@aut@@ Nasov, I. @@aut@@ Gracin, D. @@aut@@ Milun, M. @@aut@@ Kostadinova-Boskova, H. @@aut@@ Popeski-Dimovski, R. @@aut@@ |
publishDateDaySort_date |
2012-09-06T00:00:00Z |
hierarchy_top_id |
324918739 |
id |
SPR021500266 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR021500266</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331054923.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-012-2221-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR021500266</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11664-012-2221-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ristova, M. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">$ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© TMS 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a $ TiO_{2} $ stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, $ TiO_{2} $ films revealed insignificant changes in the optical spectra. The initial sheet resistance of the $ SnO_{2} $:F layer was 14 Ω/sq. The deposition of the top $ TiO_{2} $ layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/$ TiO_{2} $ transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of $ H^{+} $ plasma exposure. Regardless of the $ TiO_{2} $ film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive $ H^{+} $ plasma conditions. In this paper we show that ∼50-nm-thick $ TiO_{2} $ coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thin-film coating</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AFM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XPS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">filtered cathodic arc evaporation (FCAE)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transmittance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reflectance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radicals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XPS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SEM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AXRD</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XRR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gligorova, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nasov, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gracin, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Milun, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kostadinova-Boskova, H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Popeski-Dimovski, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Warrendale, Pa : TMS, 1972</subfield><subfield code="g">41(2012), 11 vom: 06. Sept., Seite 3087-3094</subfield><subfield code="w">(DE-627)324918739</subfield><subfield code="w">(DE-600)2032868-0</subfield><subfield code="x">1543-186X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:11</subfield><subfield code="g">day:06</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:3087-3094</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11664-012-2221-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2012</subfield><subfield code="e">11</subfield><subfield code="b">06</subfield><subfield code="c">09</subfield><subfield code="h">3087-3094</subfield></datafield></record></collection>
|
author |
Ristova, M. M. |
spellingShingle |
Ristova, M. M. misc TiO misc thin-film coating misc AFM misc XPS misc filtered cathodic arc evaporation (FCAE) misc transmittance misc reflectance misc H misc radicals misc SEM misc AXRD misc XRR $ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure |
authorStr |
Ristova, M. M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)324918739 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1543-186X |
topic_title |
$ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure TiO (dpeaa)DE-He213 thin-film coating (dpeaa)DE-He213 AFM (dpeaa)DE-He213 XPS (dpeaa)DE-He213 filtered cathodic arc evaporation (FCAE) (dpeaa)DE-He213 transmittance (dpeaa)DE-He213 reflectance (dpeaa)DE-He213 H (dpeaa)DE-He213 radicals (dpeaa)DE-He213 SEM (dpeaa)DE-He213 AXRD (dpeaa)DE-He213 XRR (dpeaa)DE-He213 |
topic |
misc TiO misc thin-film coating misc AFM misc XPS misc filtered cathodic arc evaporation (FCAE) misc transmittance misc reflectance misc H misc radicals misc SEM misc AXRD misc XRR |
topic_unstemmed |
misc TiO misc thin-film coating misc AFM misc XPS misc filtered cathodic arc evaporation (FCAE) misc transmittance misc reflectance misc H misc radicals misc SEM misc AXRD misc XRR |
topic_browse |
misc TiO misc thin-film coating misc AFM misc XPS misc filtered cathodic arc evaporation (FCAE) misc transmittance misc reflectance misc H misc radicals misc SEM misc AXRD misc XRR |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Journal of electronic materials |
hierarchy_parent_id |
324918739 |
hierarchy_top_title |
Journal of electronic materials |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)324918739 (DE-600)2032868-0 |
title |
$ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure |
ctrlnum |
(DE-627)SPR021500266 (SPR)s11664-012-2221-4-e |
title_full |
$ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure |
author_sort |
Ristova, M. M. |
journal |
Journal of electronic materials |
journalStr |
Journal of electronic materials |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2012 |
contenttype_str_mv |
txt |
container_start_page |
3087 |
author_browse |
Ristova, M. M. Gligorova, A. Nasov, I. Gracin, D. Milun, M. Kostadinova-Boskova, H. Popeski-Dimovski, R. |
container_volume |
41 |
format_se |
Elektronische Aufsätze |
author-letter |
Ristova, M. M. |
doi_str_mv |
10.1007/s11664-012-2221-4 |
title_sort |
$ tio_{2} $ coating for $ sno_{2} $:f films produced by filtered cathodic arc evaporation for improved resistance to $ h^{+} $ radical exposure |
title_auth |
$ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure |
abstract |
Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a $ TiO_{2} $ stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, $ TiO_{2} $ films revealed insignificant changes in the optical spectra. The initial sheet resistance of the $ SnO_{2} $:F layer was 14 Ω/sq. The deposition of the top $ TiO_{2} $ layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/$ TiO_{2} $ transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of $ H^{+} $ plasma exposure. Regardless of the $ TiO_{2} $ film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive $ H^{+} $ plasma conditions. In this paper we show that ∼50-nm-thick $ TiO_{2} $ coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure. © TMS 2012 |
abstractGer |
Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a $ TiO_{2} $ stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, $ TiO_{2} $ films revealed insignificant changes in the optical spectra. The initial sheet resistance of the $ SnO_{2} $:F layer was 14 Ω/sq. The deposition of the top $ TiO_{2} $ layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/$ TiO_{2} $ transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of $ H^{+} $ plasma exposure. Regardless of the $ TiO_{2} $ film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive $ H^{+} $ plasma conditions. In this paper we show that ∼50-nm-thick $ TiO_{2} $ coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure. © TMS 2012 |
abstract_unstemmed |
Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a $ TiO_{2} $ stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, $ TiO_{2} $ films revealed insignificant changes in the optical spectra. The initial sheet resistance of the $ SnO_{2} $:F layer was 14 Ω/sq. The deposition of the top $ TiO_{2} $ layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/$ TiO_{2} $ transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of $ H^{+} $ plasma exposure. Regardless of the $ TiO_{2} $ film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive $ H^{+} $ plasma conditions. In this paper we show that ∼50-nm-thick $ TiO_{2} $ coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure. © TMS 2012 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4328 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
11 |
title_short |
$ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure |
url |
https://dx.doi.org/10.1007/s11664-012-2221-4 |
remote_bool |
true |
author2 |
Gligorova, A. Nasov, I. Gracin, D. Milun, M. Kostadinova-Boskova, H. Popeski-Dimovski, R. |
author2Str |
Gligorova, A. Nasov, I. Gracin, D. Milun, M. Kostadinova-Boskova, H. Popeski-Dimovski, R. |
ppnlink |
324918739 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11664-012-2221-4 |
up_date |
2024-07-03T22:56:31.973Z |
_version_ |
1803600414090723329 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR021500266</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331054923.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2012 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11664-012-2221-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR021500266</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11664-012-2221-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ristova, M. M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">$ TiO_{2} $ Coating for $ SnO_{2} $:F Films Produced by Filtered Cathodic Arc Evaporation for Improved Resistance to $ H^{+} $ Radical Exposure</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2012</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© TMS 2012</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Titanium dioxide thin films were deposited by filtered cathodic arc evaporation (FCAE) from a Ti target in an oxygen atmosphere onto (a) fluorine-doped tin oxide substrates $ SnO_{2} $:F (FTO) and (b) glass microscope slides. The growth rate calculated from film thickness profilometry measurements was found to be approximately 0.8 nm/s. The films were highly transparent to visible light. x-Ray photoemission spectroscopy analysis of the Ti 2p electron binding- energy shift confirmed the presence of a $ TiO_{2} $ stoichiometric compound. The results for the root-mean-square (RMS) surface roughness of the films deposited onto FTO substrates evaluated by atomic force microscopy suggested nanostructured film surfaces. When exposed to hydrogen plasma, $ TiO_{2} $ films revealed insignificant changes in the optical spectra. The initial sheet resistance of the $ SnO_{2} $:F layer was 14 Ω/sq. The deposition of the top $ TiO_{2} $ layer (45 nm thick) over the FTO electrode resulted in an increase of the sheet resistance of 2 Ω/sq. In addition, the sheet resistance of the double-layer FTO/$ TiO_{2} $ transparent conductive oxide (TCO) electrode increased by 1 Ω/sq as a result of $ H^{+} $ plasma exposure. Regardless of the $ TiO_{2} $ film’s low conductivity, a thin protective layer could be coated onto FTO films (presumably 15 nm thick) due to their high transparency, offering high resistance to aggressive $ H^{+} $ plasma conditions. In this paper we show that ∼50-nm-thick $ TiO_{2} $ coating on FTO films provides sufficient protection against deterioration of transparency and conductivity due to hydrogen radical exposure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TiO</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">thin-film coating</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AFM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XPS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">filtered cathodic arc evaporation (FCAE)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">transmittance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">reflectance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">H</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">radicals</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XPS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SEM</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">AXRD</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">XRR</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gligorova, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nasov, I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gracin, D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Milun, M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kostadinova-Boskova, H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Popeski-Dimovski, R.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic materials</subfield><subfield code="d">Warrendale, Pa : TMS, 1972</subfield><subfield code="g">41(2012), 11 vom: 06. Sept., Seite 3087-3094</subfield><subfield code="w">(DE-627)324918739</subfield><subfield code="w">(DE-600)2032868-0</subfield><subfield code="x">1543-186X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2012</subfield><subfield code="g">number:11</subfield><subfield code="g">day:06</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:3087-3094</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11664-012-2221-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4328</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2012</subfield><subfield code="e">11</subfield><subfield code="b">06</subfield><subfield code="c">09</subfield><subfield code="h">3087-3094</subfield></datafield></record></collection>
|
score |
7.398425 |