Machine learning approach to identify a resting-state functional connectivity pattern serving as an endophenotype of autism spectrum disorder

Abstract Endophenotype refers to a measurable and heritable component between genetics and diagnosis, and the same endophenotype is present in both individuals with a diagnosis and their unaffected siblings. Determination of the neural correlates of an endophenotype and diagnosis is important in aut...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Yamagata, Bun [verfasserIn]

Itahashi, Takashi [verfasserIn]

Fujino, Junya [verfasserIn]

Ohta, Haruhisa [verfasserIn]

Nakamura, Motoaki [verfasserIn]

Kato, Nobumasa [verfasserIn]

Mimura, Masaru [verfasserIn]

Hashimoto, Ryu-ichiro [verfasserIn]

Aoki, Yuta [verfasserIn]

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2018

Schlagwörter:

Autism spectrum disorder

Endophenotype

Machine learning

Resting state

Unaffected siblings

Übergeordnetes Werk:

Enthalten in: Brain imaging and behavior - New York, NY [u.a.] : Springer, 2007, 13(2018), 6 vom: 02. Okt., Seite 1689-1698

Übergeordnetes Werk:

volume:13 ; year:2018 ; number:6 ; day:02 ; month:10 ; pages:1689-1698

Links:

Volltext

DOI / URN:

10.1007/s11682-018-9973-2

Katalog-ID:

SPR021721173

Nicht das Richtige dabei?

Schreiben Sie uns!