CluCF: a clustering CF algorithm to address data sparsity problem
Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorith...
Ausführliche Beschreibung
Autor*in: |
Yu, Chengyuan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag London 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Service oriented computing and applications - London [u.a.] : Springer, 2007, 11(2016), 1 vom: 23. Feb., Seite 33-45 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2016 ; number:1 ; day:23 ; month:02 ; pages:33-45 |
Links: |
---|
DOI / URN: |
10.1007/s11761-016-0191-8 |
---|
Katalog-ID: |
SPR022281622 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR022281622 | ||
003 | DE-627 | ||
005 | 20230330073608.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s11761-016-0191-8 |2 doi | |
035 | |a (DE-627)SPR022281622 | ||
035 | |a (SPR)s11761-016-0191-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Yu, Chengyuan |e verfasserin |0 (orcid)0000-0001-9315-2561 |4 aut | |
245 | 1 | 0 | |a CluCF: a clustering CF algorithm to address data sparsity problem |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Springer-Verlag London 2016 | ||
520 | |a Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorithms. Although model-based algorithms can address the data sparsity problem, those models are often time-consuming to build and update. Thus, these CF algorithms aren’t fit for highly dynamic and large-scale environments, such as Web service recommendation systems. In order to overcome this drawback, this paper proposes a novel approach CluCF, which employs user clusters and service clusters to address the data sparsity problem and classifies the new user (the new service) by location factor to lower the time complexity of updating clusters. Additionally, in order to improve the prediction accuracy, CluCF employs time factor. Time-aware user-service matrix Mu;s(tk, d) is introduced, and the time-aware similarity measurement and time-aware QoS prediction are employed in this paper. Since the QoS performance of Web services is highly related to invocation time due to some time-varying factors (e.g., service status, network condition), time-aware similarity measurement and time-aware QoS prediction are more trustworthy than traditional similarity measurement and QoS prediction, respectively. Since similarity measurement and QoS prediction are two key steps of neighborhood-based CF, time-aware CF will be more accurate than traditional CF. Moreover, our approach systematically combines user-based and item-based methods and employs influence weights to balance these two predicted values, automatically. To validate our algorithm, this paper conducts a series of large-scale experiments based on a real-world Web service QoS dataset. Experimental results show that our approach is capable of alleviating the data sparsity problem. | ||
650 | 4 | |a Web service |7 (dpeaa)DE-He213 | |
650 | 4 | |a QoS prediction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Time-aware |7 (dpeaa)DE-He213 | |
650 | 4 | |a Collaborative filtering algorithm |7 (dpeaa)DE-He213 | |
700 | 1 | |a Huang, Linpeng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Service oriented computing and applications |d London [u.a.] : Springer, 2007 |g 11(2016), 1 vom: 23. Feb., Seite 33-45 |w (DE-627)527574260 |w (DE-600)2276534-7 |x 1863-2394 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2016 |g number:1 |g day:23 |g month:02 |g pages:33-45 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s11761-016-0191-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2016 |e 1 |b 23 |c 02 |h 33-45 |
author_variant |
c y cy l h lh |
---|---|
matchkey_str |
article:18632394:2016----::lcalseigfloihtadesa |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1007/s11761-016-0191-8 doi (DE-627)SPR022281622 (SPR)s11761-016-0191-8-e DE-627 ger DE-627 rakwb eng Yu, Chengyuan verfasserin (orcid)0000-0001-9315-2561 aut CluCF: a clustering CF algorithm to address data sparsity problem 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag London 2016 Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorithms. Although model-based algorithms can address the data sparsity problem, those models are often time-consuming to build and update. Thus, these CF algorithms aren’t fit for highly dynamic and large-scale environments, such as Web service recommendation systems. In order to overcome this drawback, this paper proposes a novel approach CluCF, which employs user clusters and service clusters to address the data sparsity problem and classifies the new user (the new service) by location factor to lower the time complexity of updating clusters. Additionally, in order to improve the prediction accuracy, CluCF employs time factor. Time-aware user-service matrix Mu;s(tk, d) is introduced, and the time-aware similarity measurement and time-aware QoS prediction are employed in this paper. Since the QoS performance of Web services is highly related to invocation time due to some time-varying factors (e.g., service status, network condition), time-aware similarity measurement and time-aware QoS prediction are more trustworthy than traditional similarity measurement and QoS prediction, respectively. Since similarity measurement and QoS prediction are two key steps of neighborhood-based CF, time-aware CF will be more accurate than traditional CF. Moreover, our approach systematically combines user-based and item-based methods and employs influence weights to balance these two predicted values, automatically. To validate our algorithm, this paper conducts a series of large-scale experiments based on a real-world Web service QoS dataset. Experimental results show that our approach is capable of alleviating the data sparsity problem. Web service (dpeaa)DE-He213 QoS prediction (dpeaa)DE-He213 Time-aware (dpeaa)DE-He213 Collaborative filtering algorithm (dpeaa)DE-He213 Huang, Linpeng aut Enthalten in Service oriented computing and applications London [u.a.] : Springer, 2007 11(2016), 1 vom: 23. Feb., Seite 33-45 (DE-627)527574260 (DE-600)2276534-7 1863-2394 nnns volume:11 year:2016 number:1 day:23 month:02 pages:33-45 https://dx.doi.org/10.1007/s11761-016-0191-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 11 2016 1 23 02 33-45 |
spelling |
10.1007/s11761-016-0191-8 doi (DE-627)SPR022281622 (SPR)s11761-016-0191-8-e DE-627 ger DE-627 rakwb eng Yu, Chengyuan verfasserin (orcid)0000-0001-9315-2561 aut CluCF: a clustering CF algorithm to address data sparsity problem 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag London 2016 Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorithms. Although model-based algorithms can address the data sparsity problem, those models are often time-consuming to build and update. Thus, these CF algorithms aren’t fit for highly dynamic and large-scale environments, such as Web service recommendation systems. In order to overcome this drawback, this paper proposes a novel approach CluCF, which employs user clusters and service clusters to address the data sparsity problem and classifies the new user (the new service) by location factor to lower the time complexity of updating clusters. Additionally, in order to improve the prediction accuracy, CluCF employs time factor. Time-aware user-service matrix Mu;s(tk, d) is introduced, and the time-aware similarity measurement and time-aware QoS prediction are employed in this paper. Since the QoS performance of Web services is highly related to invocation time due to some time-varying factors (e.g., service status, network condition), time-aware similarity measurement and time-aware QoS prediction are more trustworthy than traditional similarity measurement and QoS prediction, respectively. Since similarity measurement and QoS prediction are two key steps of neighborhood-based CF, time-aware CF will be more accurate than traditional CF. Moreover, our approach systematically combines user-based and item-based methods and employs influence weights to balance these two predicted values, automatically. To validate our algorithm, this paper conducts a series of large-scale experiments based on a real-world Web service QoS dataset. Experimental results show that our approach is capable of alleviating the data sparsity problem. Web service (dpeaa)DE-He213 QoS prediction (dpeaa)DE-He213 Time-aware (dpeaa)DE-He213 Collaborative filtering algorithm (dpeaa)DE-He213 Huang, Linpeng aut Enthalten in Service oriented computing and applications London [u.a.] : Springer, 2007 11(2016), 1 vom: 23. Feb., Seite 33-45 (DE-627)527574260 (DE-600)2276534-7 1863-2394 nnns volume:11 year:2016 number:1 day:23 month:02 pages:33-45 https://dx.doi.org/10.1007/s11761-016-0191-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 11 2016 1 23 02 33-45 |
allfields_unstemmed |
10.1007/s11761-016-0191-8 doi (DE-627)SPR022281622 (SPR)s11761-016-0191-8-e DE-627 ger DE-627 rakwb eng Yu, Chengyuan verfasserin (orcid)0000-0001-9315-2561 aut CluCF: a clustering CF algorithm to address data sparsity problem 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag London 2016 Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorithms. Although model-based algorithms can address the data sparsity problem, those models are often time-consuming to build and update. Thus, these CF algorithms aren’t fit for highly dynamic and large-scale environments, such as Web service recommendation systems. In order to overcome this drawback, this paper proposes a novel approach CluCF, which employs user clusters and service clusters to address the data sparsity problem and classifies the new user (the new service) by location factor to lower the time complexity of updating clusters. Additionally, in order to improve the prediction accuracy, CluCF employs time factor. Time-aware user-service matrix Mu;s(tk, d) is introduced, and the time-aware similarity measurement and time-aware QoS prediction are employed in this paper. Since the QoS performance of Web services is highly related to invocation time due to some time-varying factors (e.g., service status, network condition), time-aware similarity measurement and time-aware QoS prediction are more trustworthy than traditional similarity measurement and QoS prediction, respectively. Since similarity measurement and QoS prediction are two key steps of neighborhood-based CF, time-aware CF will be more accurate than traditional CF. Moreover, our approach systematically combines user-based and item-based methods and employs influence weights to balance these two predicted values, automatically. To validate our algorithm, this paper conducts a series of large-scale experiments based on a real-world Web service QoS dataset. Experimental results show that our approach is capable of alleviating the data sparsity problem. Web service (dpeaa)DE-He213 QoS prediction (dpeaa)DE-He213 Time-aware (dpeaa)DE-He213 Collaborative filtering algorithm (dpeaa)DE-He213 Huang, Linpeng aut Enthalten in Service oriented computing and applications London [u.a.] : Springer, 2007 11(2016), 1 vom: 23. Feb., Seite 33-45 (DE-627)527574260 (DE-600)2276534-7 1863-2394 nnns volume:11 year:2016 number:1 day:23 month:02 pages:33-45 https://dx.doi.org/10.1007/s11761-016-0191-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 11 2016 1 23 02 33-45 |
allfieldsGer |
10.1007/s11761-016-0191-8 doi (DE-627)SPR022281622 (SPR)s11761-016-0191-8-e DE-627 ger DE-627 rakwb eng Yu, Chengyuan verfasserin (orcid)0000-0001-9315-2561 aut CluCF: a clustering CF algorithm to address data sparsity problem 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag London 2016 Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorithms. Although model-based algorithms can address the data sparsity problem, those models are often time-consuming to build and update. Thus, these CF algorithms aren’t fit for highly dynamic and large-scale environments, such as Web service recommendation systems. In order to overcome this drawback, this paper proposes a novel approach CluCF, which employs user clusters and service clusters to address the data sparsity problem and classifies the new user (the new service) by location factor to lower the time complexity of updating clusters. Additionally, in order to improve the prediction accuracy, CluCF employs time factor. Time-aware user-service matrix Mu;s(tk, d) is introduced, and the time-aware similarity measurement and time-aware QoS prediction are employed in this paper. Since the QoS performance of Web services is highly related to invocation time due to some time-varying factors (e.g., service status, network condition), time-aware similarity measurement and time-aware QoS prediction are more trustworthy than traditional similarity measurement and QoS prediction, respectively. Since similarity measurement and QoS prediction are two key steps of neighborhood-based CF, time-aware CF will be more accurate than traditional CF. Moreover, our approach systematically combines user-based and item-based methods and employs influence weights to balance these two predicted values, automatically. To validate our algorithm, this paper conducts a series of large-scale experiments based on a real-world Web service QoS dataset. Experimental results show that our approach is capable of alleviating the data sparsity problem. Web service (dpeaa)DE-He213 QoS prediction (dpeaa)DE-He213 Time-aware (dpeaa)DE-He213 Collaborative filtering algorithm (dpeaa)DE-He213 Huang, Linpeng aut Enthalten in Service oriented computing and applications London [u.a.] : Springer, 2007 11(2016), 1 vom: 23. Feb., Seite 33-45 (DE-627)527574260 (DE-600)2276534-7 1863-2394 nnns volume:11 year:2016 number:1 day:23 month:02 pages:33-45 https://dx.doi.org/10.1007/s11761-016-0191-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 11 2016 1 23 02 33-45 |
allfieldsSound |
10.1007/s11761-016-0191-8 doi (DE-627)SPR022281622 (SPR)s11761-016-0191-8-e DE-627 ger DE-627 rakwb eng Yu, Chengyuan verfasserin (orcid)0000-0001-9315-2561 aut CluCF: a clustering CF algorithm to address data sparsity problem 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Springer-Verlag London 2016 Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorithms. Although model-based algorithms can address the data sparsity problem, those models are often time-consuming to build and update. Thus, these CF algorithms aren’t fit for highly dynamic and large-scale environments, such as Web service recommendation systems. In order to overcome this drawback, this paper proposes a novel approach CluCF, which employs user clusters and service clusters to address the data sparsity problem and classifies the new user (the new service) by location factor to lower the time complexity of updating clusters. Additionally, in order to improve the prediction accuracy, CluCF employs time factor. Time-aware user-service matrix Mu;s(tk, d) is introduced, and the time-aware similarity measurement and time-aware QoS prediction are employed in this paper. Since the QoS performance of Web services is highly related to invocation time due to some time-varying factors (e.g., service status, network condition), time-aware similarity measurement and time-aware QoS prediction are more trustworthy than traditional similarity measurement and QoS prediction, respectively. Since similarity measurement and QoS prediction are two key steps of neighborhood-based CF, time-aware CF will be more accurate than traditional CF. Moreover, our approach systematically combines user-based and item-based methods and employs influence weights to balance these two predicted values, automatically. To validate our algorithm, this paper conducts a series of large-scale experiments based on a real-world Web service QoS dataset. Experimental results show that our approach is capable of alleviating the data sparsity problem. Web service (dpeaa)DE-He213 QoS prediction (dpeaa)DE-He213 Time-aware (dpeaa)DE-He213 Collaborative filtering algorithm (dpeaa)DE-He213 Huang, Linpeng aut Enthalten in Service oriented computing and applications London [u.a.] : Springer, 2007 11(2016), 1 vom: 23. Feb., Seite 33-45 (DE-627)527574260 (DE-600)2276534-7 1863-2394 nnns volume:11 year:2016 number:1 day:23 month:02 pages:33-45 https://dx.doi.org/10.1007/s11761-016-0191-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 11 2016 1 23 02 33-45 |
language |
English |
source |
Enthalten in Service oriented computing and applications 11(2016), 1 vom: 23. Feb., Seite 33-45 volume:11 year:2016 number:1 day:23 month:02 pages:33-45 |
sourceStr |
Enthalten in Service oriented computing and applications 11(2016), 1 vom: 23. Feb., Seite 33-45 volume:11 year:2016 number:1 day:23 month:02 pages:33-45 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Web service QoS prediction Time-aware Collaborative filtering algorithm |
isfreeaccess_bool |
false |
container_title |
Service oriented computing and applications |
authorswithroles_txt_mv |
Yu, Chengyuan @@aut@@ Huang, Linpeng @@aut@@ |
publishDateDaySort_date |
2016-02-23T00:00:00Z |
hierarchy_top_id |
527574260 |
id |
SPR022281622 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR022281622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230330073608.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11761-016-0191-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR022281622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11761-016-0191-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Chengyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9315-2561</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CluCF: a clustering CF algorithm to address data sparsity problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorithms. Although model-based algorithms can address the data sparsity problem, those models are often time-consuming to build and update. Thus, these CF algorithms aren’t fit for highly dynamic and large-scale environments, such as Web service recommendation systems. In order to overcome this drawback, this paper proposes a novel approach CluCF, which employs user clusters and service clusters to address the data sparsity problem and classifies the new user (the new service) by location factor to lower the time complexity of updating clusters. Additionally, in order to improve the prediction accuracy, CluCF employs time factor. Time-aware user-service matrix Mu;s(tk, d) is introduced, and the time-aware similarity measurement and time-aware QoS prediction are employed in this paper. Since the QoS performance of Web services is highly related to invocation time due to some time-varying factors (e.g., service status, network condition), time-aware similarity measurement and time-aware QoS prediction are more trustworthy than traditional similarity measurement and QoS prediction, respectively. Since similarity measurement and QoS prediction are two key steps of neighborhood-based CF, time-aware CF will be more accurate than traditional CF. Moreover, our approach systematically combines user-based and item-based methods and employs influence weights to balance these two predicted values, automatically. To validate our algorithm, this paper conducts a series of large-scale experiments based on a real-world Web service QoS dataset. Experimental results show that our approach is capable of alleviating the data sparsity problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Web service</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QoS prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-aware</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collaborative filtering algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Linpeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Service oriented computing and applications</subfield><subfield code="d">London [u.a.] : Springer, 2007</subfield><subfield code="g">11(2016), 1 vom: 23. Feb., Seite 33-45</subfield><subfield code="w">(DE-627)527574260</subfield><subfield code="w">(DE-600)2276534-7</subfield><subfield code="x">1863-2394</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:23</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:33-45</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11761-016-0191-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">23</subfield><subfield code="c">02</subfield><subfield code="h">33-45</subfield></datafield></record></collection>
|
author |
Yu, Chengyuan |
spellingShingle |
Yu, Chengyuan misc Web service misc QoS prediction misc Time-aware misc Collaborative filtering algorithm CluCF: a clustering CF algorithm to address data sparsity problem |
authorStr |
Yu, Chengyuan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)527574260 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1863-2394 |
topic_title |
CluCF: a clustering CF algorithm to address data sparsity problem Web service (dpeaa)DE-He213 QoS prediction (dpeaa)DE-He213 Time-aware (dpeaa)DE-He213 Collaborative filtering algorithm (dpeaa)DE-He213 |
topic |
misc Web service misc QoS prediction misc Time-aware misc Collaborative filtering algorithm |
topic_unstemmed |
misc Web service misc QoS prediction misc Time-aware misc Collaborative filtering algorithm |
topic_browse |
misc Web service misc QoS prediction misc Time-aware misc Collaborative filtering algorithm |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Service oriented computing and applications |
hierarchy_parent_id |
527574260 |
hierarchy_top_title |
Service oriented computing and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)527574260 (DE-600)2276534-7 |
title |
CluCF: a clustering CF algorithm to address data sparsity problem |
ctrlnum |
(DE-627)SPR022281622 (SPR)s11761-016-0191-8-e |
title_full |
CluCF: a clustering CF algorithm to address data sparsity problem |
author_sort |
Yu, Chengyuan |
journal |
Service oriented computing and applications |
journalStr |
Service oriented computing and applications |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
33 |
author_browse |
Yu, Chengyuan Huang, Linpeng |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Yu, Chengyuan |
doi_str_mv |
10.1007/s11761-016-0191-8 |
normlink |
(ORCID)0000-0001-9315-2561 |
normlink_prefix_str_mv |
(orcid)0000-0001-9315-2561 |
title_sort |
clucf: a clustering cf algorithm to address data sparsity problem |
title_auth |
CluCF: a clustering CF algorithm to address data sparsity problem |
abstract |
Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorithms. Although model-based algorithms can address the data sparsity problem, those models are often time-consuming to build and update. Thus, these CF algorithms aren’t fit for highly dynamic and large-scale environments, such as Web service recommendation systems. In order to overcome this drawback, this paper proposes a novel approach CluCF, which employs user clusters and service clusters to address the data sparsity problem and classifies the new user (the new service) by location factor to lower the time complexity of updating clusters. Additionally, in order to improve the prediction accuracy, CluCF employs time factor. Time-aware user-service matrix Mu;s(tk, d) is introduced, and the time-aware similarity measurement and time-aware QoS prediction are employed in this paper. Since the QoS performance of Web services is highly related to invocation time due to some time-varying factors (e.g., service status, network condition), time-aware similarity measurement and time-aware QoS prediction are more trustworthy than traditional similarity measurement and QoS prediction, respectively. Since similarity measurement and QoS prediction are two key steps of neighborhood-based CF, time-aware CF will be more accurate than traditional CF. Moreover, our approach systematically combines user-based and item-based methods and employs influence weights to balance these two predicted values, automatically. To validate our algorithm, this paper conducts a series of large-scale experiments based on a real-world Web service QoS dataset. Experimental results show that our approach is capable of alleviating the data sparsity problem. © Springer-Verlag London 2016 |
abstractGer |
Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorithms. Although model-based algorithms can address the data sparsity problem, those models are often time-consuming to build and update. Thus, these CF algorithms aren’t fit for highly dynamic and large-scale environments, such as Web service recommendation systems. In order to overcome this drawback, this paper proposes a novel approach CluCF, which employs user clusters and service clusters to address the data sparsity problem and classifies the new user (the new service) by location factor to lower the time complexity of updating clusters. Additionally, in order to improve the prediction accuracy, CluCF employs time factor. Time-aware user-service matrix Mu;s(tk, d) is introduced, and the time-aware similarity measurement and time-aware QoS prediction are employed in this paper. Since the QoS performance of Web services is highly related to invocation time due to some time-varying factors (e.g., service status, network condition), time-aware similarity measurement and time-aware QoS prediction are more trustworthy than traditional similarity measurement and QoS prediction, respectively. Since similarity measurement and QoS prediction are two key steps of neighborhood-based CF, time-aware CF will be more accurate than traditional CF. Moreover, our approach systematically combines user-based and item-based methods and employs influence weights to balance these two predicted values, automatically. To validate our algorithm, this paper conducts a series of large-scale experiments based on a real-world Web service QoS dataset. Experimental results show that our approach is capable of alleviating the data sparsity problem. © Springer-Verlag London 2016 |
abstract_unstemmed |
Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorithms. Although model-based algorithms can address the data sparsity problem, those models are often time-consuming to build and update. Thus, these CF algorithms aren’t fit for highly dynamic and large-scale environments, such as Web service recommendation systems. In order to overcome this drawback, this paper proposes a novel approach CluCF, which employs user clusters and service clusters to address the data sparsity problem and classifies the new user (the new service) by location factor to lower the time complexity of updating clusters. Additionally, in order to improve the prediction accuracy, CluCF employs time factor. Time-aware user-service matrix Mu;s(tk, d) is introduced, and the time-aware similarity measurement and time-aware QoS prediction are employed in this paper. Since the QoS performance of Web services is highly related to invocation time due to some time-varying factors (e.g., service status, network condition), time-aware similarity measurement and time-aware QoS prediction are more trustworthy than traditional similarity measurement and QoS prediction, respectively. Since similarity measurement and QoS prediction are two key steps of neighborhood-based CF, time-aware CF will be more accurate than traditional CF. Moreover, our approach systematically combines user-based and item-based methods and employs influence weights to balance these two predicted values, automatically. To validate our algorithm, this paper conducts a series of large-scale experiments based on a real-world Web service QoS dataset. Experimental results show that our approach is capable of alleviating the data sparsity problem. © Springer-Verlag London 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
1 |
title_short |
CluCF: a clustering CF algorithm to address data sparsity problem |
url |
https://dx.doi.org/10.1007/s11761-016-0191-8 |
remote_bool |
true |
author2 |
Huang, Linpeng |
author2Str |
Huang, Linpeng |
ppnlink |
527574260 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11761-016-0191-8 |
up_date |
2024-07-04T02:32:18.754Z |
_version_ |
1803613989771411456 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR022281622</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230330073608.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11761-016-0191-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR022281622</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s11761-016-0191-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yu, Chengyuan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-9315-2561</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CluCF: a clustering CF algorithm to address data sparsity problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag London 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In QoS-based Web service recommendation, predicting Quality of Service (QoS) for users will greatly aid service selection and discovery. Collaborative filtering (CF) is an effective method for Web service selection and recommendation. Data sparsity is an important challenges for CF algorithms. Although model-based algorithms can address the data sparsity problem, those models are often time-consuming to build and update. Thus, these CF algorithms aren’t fit for highly dynamic and large-scale environments, such as Web service recommendation systems. In order to overcome this drawback, this paper proposes a novel approach CluCF, which employs user clusters and service clusters to address the data sparsity problem and classifies the new user (the new service) by location factor to lower the time complexity of updating clusters. Additionally, in order to improve the prediction accuracy, CluCF employs time factor. Time-aware user-service matrix Mu;s(tk, d) is introduced, and the time-aware similarity measurement and time-aware QoS prediction are employed in this paper. Since the QoS performance of Web services is highly related to invocation time due to some time-varying factors (e.g., service status, network condition), time-aware similarity measurement and time-aware QoS prediction are more trustworthy than traditional similarity measurement and QoS prediction, respectively. Since similarity measurement and QoS prediction are two key steps of neighborhood-based CF, time-aware CF will be more accurate than traditional CF. Moreover, our approach systematically combines user-based and item-based methods and employs influence weights to balance these two predicted values, automatically. To validate our algorithm, this paper conducts a series of large-scale experiments based on a real-world Web service QoS dataset. Experimental results show that our approach is capable of alleviating the data sparsity problem.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Web service</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">QoS prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time-aware</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Collaborative filtering algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Linpeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Service oriented computing and applications</subfield><subfield code="d">London [u.a.] : Springer, 2007</subfield><subfield code="g">11(2016), 1 vom: 23. Feb., Seite 33-45</subfield><subfield code="w">(DE-627)527574260</subfield><subfield code="w">(DE-600)2276534-7</subfield><subfield code="x">1863-2394</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:23</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:33-45</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s11761-016-0191-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">23</subfield><subfield code="c">02</subfield><subfield code="h">33-45</subfield></datafield></record></collection>
|
score |
7.3995285 |