Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review)
Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, whic...
Ausführliche Beschreibung
Autor*in: |
Golubkov, G. V. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
incoherent microwave radiation direct and reflected microwave radiation |
---|
Anmerkung: |
© Pleiades Publishing, Ltd. 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Russian journal of physical chemistry - Moscow : MAIK Nauka, Interperiodica Publ., 2007, 12(2018), 4 vom: Juli, Seite 725-748 |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2018 ; number:4 ; month:07 ; pages:725-748 |
Links: |
---|
DOI / URN: |
10.1134/S1990793118040061 |
---|
Katalog-ID: |
SPR022587861 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR022587861 | ||
003 | DE-627 | ||
005 | 20230519170756.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201006s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1134/S1990793118040061 |2 doi | |
035 | |a (DE-627)SPR022587861 | ||
035 | |a (SPR)S1990793118040061-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Golubkov, G. V. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Pleiades Publishing, Ltd. 2018 | ||
520 | |a Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time. | ||
650 | 4 | |a passive location |7 (dpeaa)DE-He213 | |
650 | 4 | |a incoherent microwave radiation |7 (dpeaa)DE-He213 | |
650 | 4 | |a direct and reflected microwave radiation |7 (dpeaa)DE-He213 | |
650 | 4 | |a charged aerosol layers |7 (dpeaa)DE-He213 | |
650 | 4 | |a mathematical analysis of measurement results |7 (dpeaa)DE-He213 | |
650 | 4 | |a calibration problems |7 (dpeaa)DE-He213 | |
700 | 1 | |a Manzhelii, M. I. |4 aut | |
700 | 1 | |a Berlin, A. A. |4 aut | |
700 | 1 | |a Lushnikov, A. A. |4 aut | |
700 | 1 | |a Eppelbaum, L. V. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Russian journal of physical chemistry |d Moscow : MAIK Nauka, Interperiodica Publ., 2007 |g 12(2018), 4 vom: Juli, Seite 725-748 |w (DE-627)688079938 |w (DE-600)2653166-5 |x 1990-7923 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2018 |g number:4 |g month:07 |g pages:725-748 |
856 | 4 | 0 | |u https://dx.doi.org/10.1134/S1990793118040061 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2018 |e 4 |c 07 |h 725-748 |
author_variant |
g v g gv gvg m i m mi mim a a b aa aab a a l aa aal l v e lv lve |
---|---|
matchkey_str |
article:19907923:2018----::fetoteneatoomcoaeaitowttetopeenhpsieeoeesnoteats |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1134/S1990793118040061 doi (DE-627)SPR022587861 (SPR)S1990793118040061-e DE-627 ger DE-627 rakwb eng Golubkov, G. V. verfasserin aut Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2018 Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time. passive location (dpeaa)DE-He213 incoherent microwave radiation (dpeaa)DE-He213 direct and reflected microwave radiation (dpeaa)DE-He213 charged aerosol layers (dpeaa)DE-He213 mathematical analysis of measurement results (dpeaa)DE-He213 calibration problems (dpeaa)DE-He213 Manzhelii, M. I. aut Berlin, A. A. aut Lushnikov, A. A. aut Eppelbaum, L. V. aut Enthalten in Russian journal of physical chemistry Moscow : MAIK Nauka, Interperiodica Publ., 2007 12(2018), 4 vom: Juli, Seite 725-748 (DE-627)688079938 (DE-600)2653166-5 1990-7923 nnns volume:12 year:2018 number:4 month:07 pages:725-748 https://dx.doi.org/10.1134/S1990793118040061 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2018 4 07 725-748 |
spelling |
10.1134/S1990793118040061 doi (DE-627)SPR022587861 (SPR)S1990793118040061-e DE-627 ger DE-627 rakwb eng Golubkov, G. V. verfasserin aut Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2018 Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time. passive location (dpeaa)DE-He213 incoherent microwave radiation (dpeaa)DE-He213 direct and reflected microwave radiation (dpeaa)DE-He213 charged aerosol layers (dpeaa)DE-He213 mathematical analysis of measurement results (dpeaa)DE-He213 calibration problems (dpeaa)DE-He213 Manzhelii, M. I. aut Berlin, A. A. aut Lushnikov, A. A. aut Eppelbaum, L. V. aut Enthalten in Russian journal of physical chemistry Moscow : MAIK Nauka, Interperiodica Publ., 2007 12(2018), 4 vom: Juli, Seite 725-748 (DE-627)688079938 (DE-600)2653166-5 1990-7923 nnns volume:12 year:2018 number:4 month:07 pages:725-748 https://dx.doi.org/10.1134/S1990793118040061 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2018 4 07 725-748 |
allfields_unstemmed |
10.1134/S1990793118040061 doi (DE-627)SPR022587861 (SPR)S1990793118040061-e DE-627 ger DE-627 rakwb eng Golubkov, G. V. verfasserin aut Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2018 Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time. passive location (dpeaa)DE-He213 incoherent microwave radiation (dpeaa)DE-He213 direct and reflected microwave radiation (dpeaa)DE-He213 charged aerosol layers (dpeaa)DE-He213 mathematical analysis of measurement results (dpeaa)DE-He213 calibration problems (dpeaa)DE-He213 Manzhelii, M. I. aut Berlin, A. A. aut Lushnikov, A. A. aut Eppelbaum, L. V. aut Enthalten in Russian journal of physical chemistry Moscow : MAIK Nauka, Interperiodica Publ., 2007 12(2018), 4 vom: Juli, Seite 725-748 (DE-627)688079938 (DE-600)2653166-5 1990-7923 nnns volume:12 year:2018 number:4 month:07 pages:725-748 https://dx.doi.org/10.1134/S1990793118040061 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2018 4 07 725-748 |
allfieldsGer |
10.1134/S1990793118040061 doi (DE-627)SPR022587861 (SPR)S1990793118040061-e DE-627 ger DE-627 rakwb eng Golubkov, G. V. verfasserin aut Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2018 Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time. passive location (dpeaa)DE-He213 incoherent microwave radiation (dpeaa)DE-He213 direct and reflected microwave radiation (dpeaa)DE-He213 charged aerosol layers (dpeaa)DE-He213 mathematical analysis of measurement results (dpeaa)DE-He213 calibration problems (dpeaa)DE-He213 Manzhelii, M. I. aut Berlin, A. A. aut Lushnikov, A. A. aut Eppelbaum, L. V. aut Enthalten in Russian journal of physical chemistry Moscow : MAIK Nauka, Interperiodica Publ., 2007 12(2018), 4 vom: Juli, Seite 725-748 (DE-627)688079938 (DE-600)2653166-5 1990-7923 nnns volume:12 year:2018 number:4 month:07 pages:725-748 https://dx.doi.org/10.1134/S1990793118040061 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2018 4 07 725-748 |
allfieldsSound |
10.1134/S1990793118040061 doi (DE-627)SPR022587861 (SPR)S1990793118040061-e DE-627 ger DE-627 rakwb eng Golubkov, G. V. verfasserin aut Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Pleiades Publishing, Ltd. 2018 Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time. passive location (dpeaa)DE-He213 incoherent microwave radiation (dpeaa)DE-He213 direct and reflected microwave radiation (dpeaa)DE-He213 charged aerosol layers (dpeaa)DE-He213 mathematical analysis of measurement results (dpeaa)DE-He213 calibration problems (dpeaa)DE-He213 Manzhelii, M. I. aut Berlin, A. A. aut Lushnikov, A. A. aut Eppelbaum, L. V. aut Enthalten in Russian journal of physical chemistry Moscow : MAIK Nauka, Interperiodica Publ., 2007 12(2018), 4 vom: Juli, Seite 725-748 (DE-627)688079938 (DE-600)2653166-5 1990-7923 nnns volume:12 year:2018 number:4 month:07 pages:725-748 https://dx.doi.org/10.1134/S1990793118040061 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 12 2018 4 07 725-748 |
language |
English |
source |
Enthalten in Russian journal of physical chemistry 12(2018), 4 vom: Juli, Seite 725-748 volume:12 year:2018 number:4 month:07 pages:725-748 |
sourceStr |
Enthalten in Russian journal of physical chemistry 12(2018), 4 vom: Juli, Seite 725-748 volume:12 year:2018 number:4 month:07 pages:725-748 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
passive location incoherent microwave radiation direct and reflected microwave radiation charged aerosol layers mathematical analysis of measurement results calibration problems |
isfreeaccess_bool |
false |
container_title |
Russian journal of physical chemistry |
authorswithroles_txt_mv |
Golubkov, G. V. @@aut@@ Manzhelii, M. I. @@aut@@ Berlin, A. A. @@aut@@ Lushnikov, A. A. @@aut@@ Eppelbaum, L. V. @@aut@@ |
publishDateDaySort_date |
2018-07-01T00:00:00Z |
hierarchy_top_id |
688079938 |
id |
SPR022587861 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR022587861</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519170756.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1990793118040061</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR022587861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S1990793118040061-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Golubkov, G. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive location</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">incoherent microwave radiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">direct and reflected microwave radiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">charged aerosol layers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mathematical analysis of measurement results</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">calibration problems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manzhelii, M. I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berlin, A. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lushnikov, A. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eppelbaum, L. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Russian journal of physical chemistry</subfield><subfield code="d">Moscow : MAIK Nauka, Interperiodica Publ., 2007</subfield><subfield code="g">12(2018), 4 vom: Juli, Seite 725-748</subfield><subfield code="w">(DE-627)688079938</subfield><subfield code="w">(DE-600)2653166-5</subfield><subfield code="x">1990-7923</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:725-748</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S1990793118040061</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">725-748</subfield></datafield></record></collection>
|
author |
Golubkov, G. V. |
spellingShingle |
Golubkov, G. V. misc passive location misc incoherent microwave radiation misc direct and reflected microwave radiation misc charged aerosol layers misc mathematical analysis of measurement results misc calibration problems Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) |
authorStr |
Golubkov, G. V. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)688079938 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1990-7923 |
topic_title |
Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) passive location (dpeaa)DE-He213 incoherent microwave radiation (dpeaa)DE-He213 direct and reflected microwave radiation (dpeaa)DE-He213 charged aerosol layers (dpeaa)DE-He213 mathematical analysis of measurement results (dpeaa)DE-He213 calibration problems (dpeaa)DE-He213 |
topic |
misc passive location misc incoherent microwave radiation misc direct and reflected microwave radiation misc charged aerosol layers misc mathematical analysis of measurement results misc calibration problems |
topic_unstemmed |
misc passive location misc incoherent microwave radiation misc direct and reflected microwave radiation misc charged aerosol layers misc mathematical analysis of measurement results misc calibration problems |
topic_browse |
misc passive location misc incoherent microwave radiation misc direct and reflected microwave radiation misc charged aerosol layers misc mathematical analysis of measurement results misc calibration problems |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Russian journal of physical chemistry |
hierarchy_parent_id |
688079938 |
hierarchy_top_title |
Russian journal of physical chemistry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)688079938 (DE-600)2653166-5 |
title |
Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) |
ctrlnum |
(DE-627)SPR022587861 (SPR)S1990793118040061-e |
title_full |
Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) |
author_sort |
Golubkov, G. V. |
journal |
Russian journal of physical chemistry |
journalStr |
Russian journal of physical chemistry |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
725 |
author_browse |
Golubkov, G. V. Manzhelii, M. I. Berlin, A. A. Lushnikov, A. A. Eppelbaum, L. V. |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Golubkov, G. V. |
doi_str_mv |
10.1134/S1990793118040061 |
title_sort |
effects of the interaction of microwave radiation with the atmosphere on the passive remote sensing of the earth’s surface: problems and solutions (review) |
title_auth |
Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) |
abstract |
Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time. © Pleiades Publishing, Ltd. 2018 |
abstractGer |
Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time. © Pleiades Publishing, Ltd. 2018 |
abstract_unstemmed |
Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time. © Pleiades Publishing, Ltd. 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
4 |
title_short |
Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review) |
url |
https://dx.doi.org/10.1134/S1990793118040061 |
remote_bool |
true |
author2 |
Manzhelii, M. I. Berlin, A. A. Lushnikov, A. A. Eppelbaum, L. V. |
author2Str |
Manzhelii, M. I. Berlin, A. A. Lushnikov, A. A. Eppelbaum, L. V. |
ppnlink |
688079938 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1134/S1990793118040061 |
up_date |
2024-07-03T13:51:32.945Z |
_version_ |
1803566126678933504 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR022587861</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519170756.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201006s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1134/S1990793118040061</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR022587861</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)S1990793118040061-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Golubkov, G. V.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effects of the Interaction of Microwave Radiation with the Atmosphere on the Passive Remote Sensing of the Earth’s Surface: Problems and Solutions (Review)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Pleiades Publishing, Ltd. 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The main problems in the remote passive location of positions on the Earth’s surface are reviewed in detail. The first is related to the source of incoherent microwave radiation represented by a layer of two-temperature nonequilibrium ionospheric plasma at an altitude of ca. 80–110 km, which is located below a low Earth-orbiting satellite and formed under the influence of solar activity. As a result, the satellite receives direct radiation from this layer as well as reflected radiation from the Earth’s surface. The next problem is the attenuation of the intensity of the incident radiation as a result of the scattering of radio waves by charged aerosol layers located below the luminous layer. Aerosol particles are affected by solar and cosmic radiation and electronic and ionic attacks, due to which they become charged. Aerosol particles directly take part in the formation of a complete balance of charges in the atmosphere and are an effective catalyst for many physicochemical processes in neutral gaseous media. The processes related to the formation of aerosol particles, the kinetics of formation of their charge, and the processes of their interaction with incoherent microwave radiation are considered. This gives rise to the need to develop a fundamentally new scheme of passive location. Three possible versions of the arrangement of measurements are analyzed. In the first version, a complete set of measurements is implemented when the receiving equipment is simultaneously installed on the Earth, an aircraft, and a low Earth-orbiting satellite; in the second version, the receiving equipment is simultaneously installed on an aircraft and a satellite; in the third version, only on one satellite. The separation of the contributions of direct and reflected incoherent radiation received by the satellite can be achieved only using a special mathematical approach to the information processing (wavelet analysis), which has been under actively development in recent years. We fully show its broad possibilities for solving geophysical problems and discuss the problems of the calibration of the measuring equipment, which are associated with taking into account the superposition of two types of radiation coming to a satellite and with variation of the main parameters (concentration, flux density, and temperature of electrons) of the nonequilibrium two-temperature plasma in time.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">passive location</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">incoherent microwave radiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">direct and reflected microwave radiation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">charged aerosol layers</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">mathematical analysis of measurement results</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">calibration problems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Manzhelii, M. I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Berlin, A. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lushnikov, A. A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eppelbaum, L. V.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Russian journal of physical chemistry</subfield><subfield code="d">Moscow : MAIK Nauka, Interperiodica Publ., 2007</subfield><subfield code="g">12(2018), 4 vom: Juli, Seite 725-748</subfield><subfield code="w">(DE-627)688079938</subfield><subfield code="w">(DE-600)2653166-5</subfield><subfield code="x">1990-7923</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:725-748</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1134/S1990793118040061</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="c">07</subfield><subfield code="h">725-748</subfield></datafield></record></collection>
|
score |
7.400732 |