Genetic algorithms based optimization of artificial neural network architecture for buildings’ indoor discomfort and energy consumption prediction

Abstract Growing concerns about energy consumption reduction and comfort improvement inside buildings make it more and more necessary to be able to predict with fine precision building’s heating loads and indoor discomfort. This article proposes a method based on genetic algorithms (GAs) to optimize...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Boithias, Florent [verfasserIn]

El Mankibi, Mohamed

Michel, Pierre

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2012

Schlagwörter:

neural networks

optimization

genetic algorithms

discomfort prediction

energy consumption prediction

Anmerkung:

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Übergeordnetes Werk:

Enthalten in: Building simulation - Beijing : Tsinghua Press, 2008, 5(2012), 2 vom: 16. Jan., Seite 95-106

Übergeordnetes Werk:

volume:5 ; year:2012 ; number:2 ; day:16 ; month:01 ; pages:95-106

Links:

Volltext

DOI / URN:

10.1007/s12273-012-0059-6

Katalog-ID:

SPR024698334

Nicht das Richtige dabei?

Schreiben Sie uns!