Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells
Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface o...
Ausführliche Beschreibung
Autor*in: |
Liu, Jikang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: Frontiers of optoelectronics in China - [Beijing] : Higher Education Press, 2008, 11(2018), 4 vom: Dez., Seite 348-359 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2018 ; number:4 ; month:12 ; pages:348-359 |
Links: |
---|
DOI / URN: |
10.1007/s12200-018-0842-9 |
---|
Katalog-ID: |
SPR025212842 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR025212842 | ||
003 | DE-627 | ||
005 | 20230403064351.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12200-018-0842-9 |2 doi | |
035 | |a (DE-627)SPR025212842 | ||
035 | |a (SPR)s12200-018-0842-9-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Liu, Jikang |e verfasserin |4 aut | |
245 | 1 | 0 | |a Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 | ||
520 | |a Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-$ C_{61} $-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester ($ C_{60} $-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/$ C_{60} $-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the $ C_{60} $-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: $ PC_{71} $BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives $ C_{60} $-2EPM was also used as a third compound in P3HT:$ PC_{61} $BM blend to form ternary system, the devices with addition of $ C_{60} $-2EPM exhibited better values than the control device. | ||
650 | 4 | |a interface compatibility |7 (dpeaa)DE-He213 | |
650 | 4 | |a functionalized fullerene derivatives |7 (dpeaa)DE-He213 | |
650 | 4 | |a tune energy alignment |7 (dpeaa)DE-He213 | |
650 | 4 | |a third compound |7 (dpeaa)DE-He213 | |
650 | 4 | |a ternary system |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Junli |4 aut | |
700 | 1 | |a Tu, Guoli |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Frontiers of optoelectronics in China |d [Beijing] : Higher Education Press, 2008 |g 11(2018), 4 vom: Dez., Seite 348-359 |w (DE-627)587886420 |w (DE-600)2468689-X |x 1674-4594 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2018 |g number:4 |g month:12 |g pages:348-359 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12200-018-0842-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_101 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
951 | |a AR | ||
952 | |d 11 |j 2018 |e 4 |c 12 |h 348-359 |
author_variant |
j l jl j l jl g t gt |
---|---|
matchkey_str |
article:16744594:2018----::tecanucinlzdulrndrvtvssahditraeaeilfr |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s12200-018-0842-9 doi (DE-627)SPR025212842 (SPR)s12200-018-0842-9-e DE-627 ger DE-627 rakwb eng Liu, Jikang verfasserin aut Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-$ C_{61} $-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester ($ C_{60} $-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/$ C_{60} $-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the $ C_{60} $-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: $ PC_{71} $BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives $ C_{60} $-2EPM was also used as a third compound in P3HT:$ PC_{61} $BM blend to form ternary system, the devices with addition of $ C_{60} $-2EPM exhibited better values than the control device. interface compatibility (dpeaa)DE-He213 functionalized fullerene derivatives (dpeaa)DE-He213 tune energy alignment (dpeaa)DE-He213 third compound (dpeaa)DE-He213 ternary system (dpeaa)DE-He213 Li, Junli aut Tu, Guoli aut Enthalten in Frontiers of optoelectronics in China [Beijing] : Higher Education Press, 2008 11(2018), 4 vom: Dez., Seite 348-359 (DE-627)587886420 (DE-600)2468689-X 1674-4594 nnns volume:11 year:2018 number:4 month:12 pages:348-359 https://dx.doi.org/10.1007/s12200-018-0842-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 AR 11 2018 4 12 348-359 |
spelling |
10.1007/s12200-018-0842-9 doi (DE-627)SPR025212842 (SPR)s12200-018-0842-9-e DE-627 ger DE-627 rakwb eng Liu, Jikang verfasserin aut Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-$ C_{61} $-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester ($ C_{60} $-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/$ C_{60} $-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the $ C_{60} $-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: $ PC_{71} $BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives $ C_{60} $-2EPM was also used as a third compound in P3HT:$ PC_{61} $BM blend to form ternary system, the devices with addition of $ C_{60} $-2EPM exhibited better values than the control device. interface compatibility (dpeaa)DE-He213 functionalized fullerene derivatives (dpeaa)DE-He213 tune energy alignment (dpeaa)DE-He213 third compound (dpeaa)DE-He213 ternary system (dpeaa)DE-He213 Li, Junli aut Tu, Guoli aut Enthalten in Frontiers of optoelectronics in China [Beijing] : Higher Education Press, 2008 11(2018), 4 vom: Dez., Seite 348-359 (DE-627)587886420 (DE-600)2468689-X 1674-4594 nnns volume:11 year:2018 number:4 month:12 pages:348-359 https://dx.doi.org/10.1007/s12200-018-0842-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 AR 11 2018 4 12 348-359 |
allfields_unstemmed |
10.1007/s12200-018-0842-9 doi (DE-627)SPR025212842 (SPR)s12200-018-0842-9-e DE-627 ger DE-627 rakwb eng Liu, Jikang verfasserin aut Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-$ C_{61} $-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester ($ C_{60} $-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/$ C_{60} $-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the $ C_{60} $-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: $ PC_{71} $BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives $ C_{60} $-2EPM was also used as a third compound in P3HT:$ PC_{61} $BM blend to form ternary system, the devices with addition of $ C_{60} $-2EPM exhibited better values than the control device. interface compatibility (dpeaa)DE-He213 functionalized fullerene derivatives (dpeaa)DE-He213 tune energy alignment (dpeaa)DE-He213 third compound (dpeaa)DE-He213 ternary system (dpeaa)DE-He213 Li, Junli aut Tu, Guoli aut Enthalten in Frontiers of optoelectronics in China [Beijing] : Higher Education Press, 2008 11(2018), 4 vom: Dez., Seite 348-359 (DE-627)587886420 (DE-600)2468689-X 1674-4594 nnns volume:11 year:2018 number:4 month:12 pages:348-359 https://dx.doi.org/10.1007/s12200-018-0842-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 AR 11 2018 4 12 348-359 |
allfieldsGer |
10.1007/s12200-018-0842-9 doi (DE-627)SPR025212842 (SPR)s12200-018-0842-9-e DE-627 ger DE-627 rakwb eng Liu, Jikang verfasserin aut Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-$ C_{61} $-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester ($ C_{60} $-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/$ C_{60} $-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the $ C_{60} $-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: $ PC_{71} $BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives $ C_{60} $-2EPM was also used as a third compound in P3HT:$ PC_{61} $BM blend to form ternary system, the devices with addition of $ C_{60} $-2EPM exhibited better values than the control device. interface compatibility (dpeaa)DE-He213 functionalized fullerene derivatives (dpeaa)DE-He213 tune energy alignment (dpeaa)DE-He213 third compound (dpeaa)DE-He213 ternary system (dpeaa)DE-He213 Li, Junli aut Tu, Guoli aut Enthalten in Frontiers of optoelectronics in China [Beijing] : Higher Education Press, 2008 11(2018), 4 vom: Dez., Seite 348-359 (DE-627)587886420 (DE-600)2468689-X 1674-4594 nnns volume:11 year:2018 number:4 month:12 pages:348-359 https://dx.doi.org/10.1007/s12200-018-0842-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 AR 11 2018 4 12 348-359 |
allfieldsSound |
10.1007/s12200-018-0842-9 doi (DE-627)SPR025212842 (SPR)s12200-018-0842-9-e DE-627 ger DE-627 rakwb eng Liu, Jikang verfasserin aut Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-$ C_{61} $-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester ($ C_{60} $-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/$ C_{60} $-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the $ C_{60} $-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: $ PC_{71} $BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives $ C_{60} $-2EPM was also used as a third compound in P3HT:$ PC_{61} $BM blend to form ternary system, the devices with addition of $ C_{60} $-2EPM exhibited better values than the control device. interface compatibility (dpeaa)DE-He213 functionalized fullerene derivatives (dpeaa)DE-He213 tune energy alignment (dpeaa)DE-He213 third compound (dpeaa)DE-He213 ternary system (dpeaa)DE-He213 Li, Junli aut Tu, Guoli aut Enthalten in Frontiers of optoelectronics in China [Beijing] : Higher Education Press, 2008 11(2018), 4 vom: Dez., Seite 348-359 (DE-627)587886420 (DE-600)2468689-X 1674-4594 nnns volume:11 year:2018 number:4 month:12 pages:348-359 https://dx.doi.org/10.1007/s12200-018-0842-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 AR 11 2018 4 12 348-359 |
language |
English |
source |
Enthalten in Frontiers of optoelectronics in China 11(2018), 4 vom: Dez., Seite 348-359 volume:11 year:2018 number:4 month:12 pages:348-359 |
sourceStr |
Enthalten in Frontiers of optoelectronics in China 11(2018), 4 vom: Dez., Seite 348-359 volume:11 year:2018 number:4 month:12 pages:348-359 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
interface compatibility functionalized fullerene derivatives tune energy alignment third compound ternary system |
isfreeaccess_bool |
false |
container_title |
Frontiers of optoelectronics in China |
authorswithroles_txt_mv |
Liu, Jikang @@aut@@ Li, Junli @@aut@@ Tu, Guoli @@aut@@ |
publishDateDaySort_date |
2018-12-01T00:00:00Z |
hierarchy_top_id |
587886420 |
id |
SPR025212842 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR025212842</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403064351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12200-018-0842-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR025212842</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12200-018-0842-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Jikang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-$ C_{61} $-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester ($ C_{60} $-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/$ C_{60} $-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the $ C_{60} $-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: $ PC_{71} $BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives $ C_{60} $-2EPM was also used as a third compound in P3HT:$ PC_{61} $BM blend to form ternary system, the devices with addition of $ C_{60} $-2EPM exhibited better values than the control device.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interface compatibility</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functionalized fullerene derivatives</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tune energy alignment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">third compound</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ternary system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Junli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tu, Guoli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of optoelectronics in China</subfield><subfield code="d">[Beijing] : Higher Education Press, 2008</subfield><subfield code="g">11(2018), 4 vom: Dez., Seite 348-359</subfield><subfield code="w">(DE-627)587886420</subfield><subfield code="w">(DE-600)2468689-X</subfield><subfield code="x">1674-4594</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:348-359</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12200-018-0842-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">348-359</subfield></datafield></record></collection>
|
author |
Liu, Jikang |
spellingShingle |
Liu, Jikang misc interface compatibility misc functionalized fullerene derivatives misc tune energy alignment misc third compound misc ternary system Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells |
authorStr |
Liu, Jikang |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)587886420 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1674-4594 |
topic_title |
Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells interface compatibility (dpeaa)DE-He213 functionalized fullerene derivatives (dpeaa)DE-He213 tune energy alignment (dpeaa)DE-He213 third compound (dpeaa)DE-He213 ternary system (dpeaa)DE-He213 |
topic |
misc interface compatibility misc functionalized fullerene derivatives misc tune energy alignment misc third compound misc ternary system |
topic_unstemmed |
misc interface compatibility misc functionalized fullerene derivatives misc tune energy alignment misc third compound misc ternary system |
topic_browse |
misc interface compatibility misc functionalized fullerene derivatives misc tune energy alignment misc third compound misc ternary system |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Frontiers of optoelectronics in China |
hierarchy_parent_id |
587886420 |
hierarchy_top_title |
Frontiers of optoelectronics in China |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)587886420 (DE-600)2468689-X |
title |
Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells |
ctrlnum |
(DE-627)SPR025212842 (SPR)s12200-018-0842-9-e |
title_full |
Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells |
author_sort |
Liu, Jikang |
journal |
Frontiers of optoelectronics in China |
journalStr |
Frontiers of optoelectronics in China |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
348 |
author_browse |
Liu, Jikang Li, Junli Tu, Guoli |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Jikang |
doi_str_mv |
10.1007/s12200-018-0842-9 |
title_sort |
ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells |
title_auth |
Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells |
abstract |
Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-$ C_{61} $-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester ($ C_{60} $-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/$ C_{60} $-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the $ C_{60} $-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: $ PC_{71} $BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives $ C_{60} $-2EPM was also used as a third compound in P3HT:$ PC_{61} $BM blend to form ternary system, the devices with addition of $ C_{60} $-2EPM exhibited better values than the control device. © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstractGer |
Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-$ C_{61} $-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester ($ C_{60} $-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/$ C_{60} $-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the $ C_{60} $-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: $ PC_{71} $BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives $ C_{60} $-2EPM was also used as a third compound in P3HT:$ PC_{61} $BM blend to form ternary system, the devices with addition of $ C_{60} $-2EPM exhibited better values than the control device. © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
abstract_unstemmed |
Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-$ C_{61} $-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester ($ C_{60} $-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/$ C_{60} $-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the $ C_{60} $-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: $ PC_{71} $BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives $ C_{60} $-2EPM was also used as a third compound in P3HT:$ PC_{61} $BM blend to form ternary system, the devices with addition of $ C_{60} $-2EPM exhibited better values than the control device. © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_101 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_152 GBV_ILN_161 GBV_ILN_171 GBV_ILN_187 GBV_ILN_224 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2018 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2059 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 |
container_issue |
4 |
title_short |
Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells |
url |
https://dx.doi.org/10.1007/s12200-018-0842-9 |
remote_bool |
true |
author2 |
Li, Junli Tu, Guoli |
author2Str |
Li, Junli Tu, Guoli |
ppnlink |
587886420 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12200-018-0842-9 |
up_date |
2024-07-03T14:35:33.521Z |
_version_ |
1803568895520407552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR025212842</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403064351.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12200-018-0842-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR025212842</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12200-018-0842-9-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Jikang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ether chain functionalized fullerene derivatives as cathode interface materials for efficient organic solar cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The electron transport layer (ETL) plays a crucial role on the electron injection and extraction, resulting in balanced charge transporting and reducing the interfacial energy barrier. The interface compatibility and electrical contact via employing appropriate buffer layer at the surface of hydrophobic organic active layer and hydrophilic inorganic electrode are also essential for charge collections. Herein, an ether chain functionalized fullerene derivatives [6,6]-phenyl-$ C_{61} $-butyricacid-(3,5-bis(2-(2-ethoxyethoxy)-ethoxy)-phenyl)-methyl ester ($ C_{60} $-2EPM) was developed to modify zinc oxide (ZnO) in inverted structure organic solar cells (OSCs). The composited ZnO/$ C_{60} $-2EPM interface layer can help to overcome the low interface compatibility between ZnO and organic active layer. By introducing the $ C_{60} $-2EPM layer, the composited fullerene derivatives tune energy alignment and accelerated the electronic transfer, leading to increased photocurrent and power conversion efficiency (PCE) in the inverted OSCs. The PCE based on PTB7-Th: $ PC_{71} $BM was enhance from 8.11% on bare ZnO to 8.38% and 8.65% with increasing concentrations of 2.0 and 4.0 mg/mL, respectively. The fullerene derivatives $ C_{60} $-2EPM was also used as a third compound in P3HT:$ PC_{61} $BM blend to form ternary system, the devices with addition of $ C_{60} $-2EPM exhibited better values than the control device.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">interface compatibility</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">functionalized fullerene derivatives</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">tune energy alignment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">third compound</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ternary system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Junli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tu, Guoli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Frontiers of optoelectronics in China</subfield><subfield code="d">[Beijing] : Higher Education Press, 2008</subfield><subfield code="g">11(2018), 4 vom: Dez., Seite 348-359</subfield><subfield code="w">(DE-627)587886420</subfield><subfield code="w">(DE-600)2468689-X</subfield><subfield code="x">1674-4594</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:348-359</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12200-018-0842-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_101</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="c">12</subfield><subfield code="h">348-359</subfield></datafield></record></collection>
|
score |
7.3995285 |