Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces
Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2...
Ausführliche Beschreibung
Autor*in: |
Chang, Shih-sen [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
total asymptotically nonexpansive mapping total symptotically quasi-nonexpansive mapping asymptotically quasi-nonexpansive mapping |
---|
Anmerkung: |
© Versita Warsaw and Springer-Verlag Wien 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: Mathematica Slovaca - Warsaw : Versita, 2007, 63(2013), 5 vom: Okt., Seite 1073-1084 |
---|---|
Übergeordnetes Werk: |
volume:63 ; year:2013 ; number:5 ; month:10 ; pages:1073-1084 |
Links: |
---|
DOI / URN: |
10.2478/s12175-013-0156-8 |
---|
Katalog-ID: |
SPR025444107 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR025444107 | ||
003 | DE-627 | ||
005 | 20230403060510.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.2478/s12175-013-0156-8 |2 doi | |
035 | |a (DE-627)SPR025444107 | ||
035 | |a (SPR)s12175-013-0156-8-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Chang, Shih-sen |e verfasserin |4 aut | |
245 | 1 | 0 | |a Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Versita Warsaw and Springer-Verlag Wien 2013 | ||
520 | |a Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2007), 128–141], [J. Math. Anal. Appl. 326 (2007), 960–973], [Internat. J. Math. Math. Sci. 2009, Article ID 615107, 17 pp.] and others. | ||
650 | 4 | |a total asymptotically nonexpansive mapping |7 (dpeaa)DE-He213 | |
650 | 4 | |a total symptotically quasi-nonexpansive mapping |7 (dpeaa)DE-He213 | |
650 | 4 | |a asymptotically quasi-nonexpansive mapping |7 (dpeaa)DE-He213 | |
650 | 4 | |a asymptotically nonexpansive mapping |7 (dpeaa)DE-He213 | |
650 | 4 | |a asymptotically nonexpansive in the intermediate sense |7 (dpeaa)DE-He213 | |
700 | 1 | |a Joseph Lee, H. W. |4 aut | |
700 | 1 | |a Chan, Chi Kin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mathematica Slovaca |d Warsaw : Versita, 2007 |g 63(2013), 5 vom: Okt., Seite 1073-1084 |w (DE-627)548127344 |w (DE-600)2393408-6 |x 1337-2211 |7 nnns |
773 | 1 | 8 | |g volume:63 |g year:2013 |g number:5 |g month:10 |g pages:1073-1084 |
856 | 4 | 0 | |u https://dx.doi.org/10.2478/s12175-013-0156-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4277 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 63 |j 2013 |e 5 |c 10 |h 1073-1084 |
author_variant |
s s c ssc l h w j lhw lhwj c k c ck ckc |
---|---|
matchkey_str |
article:13372211:2013----::oeovrectermfroaaypoialnnxasv |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.2478/s12175-013-0156-8 doi (DE-627)SPR025444107 (SPR)s12175-013-0156-8-e DE-627 ger DE-627 rakwb eng Chang, Shih-sen verfasserin aut Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Versita Warsaw and Springer-Verlag Wien 2013 Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2007), 128–141], [J. Math. Anal. Appl. 326 (2007), 960–973], [Internat. J. Math. Math. Sci. 2009, Article ID 615107, 17 pp.] and others. total asymptotically nonexpansive mapping (dpeaa)DE-He213 total symptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive in the intermediate sense (dpeaa)DE-He213 Joseph Lee, H. W. aut Chan, Chi Kin aut Enthalten in Mathematica Slovaca Warsaw : Versita, 2007 63(2013), 5 vom: Okt., Seite 1073-1084 (DE-627)548127344 (DE-600)2393408-6 1337-2211 nnns volume:63 year:2013 number:5 month:10 pages:1073-1084 https://dx.doi.org/10.2478/s12175-013-0156-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 63 2013 5 10 1073-1084 |
spelling |
10.2478/s12175-013-0156-8 doi (DE-627)SPR025444107 (SPR)s12175-013-0156-8-e DE-627 ger DE-627 rakwb eng Chang, Shih-sen verfasserin aut Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Versita Warsaw and Springer-Verlag Wien 2013 Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2007), 128–141], [J. Math. Anal. Appl. 326 (2007), 960–973], [Internat. J. Math. Math. Sci. 2009, Article ID 615107, 17 pp.] and others. total asymptotically nonexpansive mapping (dpeaa)DE-He213 total symptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive in the intermediate sense (dpeaa)DE-He213 Joseph Lee, H. W. aut Chan, Chi Kin aut Enthalten in Mathematica Slovaca Warsaw : Versita, 2007 63(2013), 5 vom: Okt., Seite 1073-1084 (DE-627)548127344 (DE-600)2393408-6 1337-2211 nnns volume:63 year:2013 number:5 month:10 pages:1073-1084 https://dx.doi.org/10.2478/s12175-013-0156-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 63 2013 5 10 1073-1084 |
allfields_unstemmed |
10.2478/s12175-013-0156-8 doi (DE-627)SPR025444107 (SPR)s12175-013-0156-8-e DE-627 ger DE-627 rakwb eng Chang, Shih-sen verfasserin aut Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Versita Warsaw and Springer-Verlag Wien 2013 Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2007), 128–141], [J. Math. Anal. Appl. 326 (2007), 960–973], [Internat. J. Math. Math. Sci. 2009, Article ID 615107, 17 pp.] and others. total asymptotically nonexpansive mapping (dpeaa)DE-He213 total symptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive in the intermediate sense (dpeaa)DE-He213 Joseph Lee, H. W. aut Chan, Chi Kin aut Enthalten in Mathematica Slovaca Warsaw : Versita, 2007 63(2013), 5 vom: Okt., Seite 1073-1084 (DE-627)548127344 (DE-600)2393408-6 1337-2211 nnns volume:63 year:2013 number:5 month:10 pages:1073-1084 https://dx.doi.org/10.2478/s12175-013-0156-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 63 2013 5 10 1073-1084 |
allfieldsGer |
10.2478/s12175-013-0156-8 doi (DE-627)SPR025444107 (SPR)s12175-013-0156-8-e DE-627 ger DE-627 rakwb eng Chang, Shih-sen verfasserin aut Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Versita Warsaw and Springer-Verlag Wien 2013 Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2007), 128–141], [J. Math. Anal. Appl. 326 (2007), 960–973], [Internat. J. Math. Math. Sci. 2009, Article ID 615107, 17 pp.] and others. total asymptotically nonexpansive mapping (dpeaa)DE-He213 total symptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive in the intermediate sense (dpeaa)DE-He213 Joseph Lee, H. W. aut Chan, Chi Kin aut Enthalten in Mathematica Slovaca Warsaw : Versita, 2007 63(2013), 5 vom: Okt., Seite 1073-1084 (DE-627)548127344 (DE-600)2393408-6 1337-2211 nnns volume:63 year:2013 number:5 month:10 pages:1073-1084 https://dx.doi.org/10.2478/s12175-013-0156-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 63 2013 5 10 1073-1084 |
allfieldsSound |
10.2478/s12175-013-0156-8 doi (DE-627)SPR025444107 (SPR)s12175-013-0156-8-e DE-627 ger DE-627 rakwb eng Chang, Shih-sen verfasserin aut Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Versita Warsaw and Springer-Verlag Wien 2013 Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2007), 128–141], [J. Math. Anal. Appl. 326 (2007), 960–973], [Internat. J. Math. Math. Sci. 2009, Article ID 615107, 17 pp.] and others. total asymptotically nonexpansive mapping (dpeaa)DE-He213 total symptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive in the intermediate sense (dpeaa)DE-He213 Joseph Lee, H. W. aut Chan, Chi Kin aut Enthalten in Mathematica Slovaca Warsaw : Versita, 2007 63(2013), 5 vom: Okt., Seite 1073-1084 (DE-627)548127344 (DE-600)2393408-6 1337-2211 nnns volume:63 year:2013 number:5 month:10 pages:1073-1084 https://dx.doi.org/10.2478/s12175-013-0156-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 63 2013 5 10 1073-1084 |
language |
English |
source |
Enthalten in Mathematica Slovaca 63(2013), 5 vom: Okt., Seite 1073-1084 volume:63 year:2013 number:5 month:10 pages:1073-1084 |
sourceStr |
Enthalten in Mathematica Slovaca 63(2013), 5 vom: Okt., Seite 1073-1084 volume:63 year:2013 number:5 month:10 pages:1073-1084 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
total asymptotically nonexpansive mapping total symptotically quasi-nonexpansive mapping asymptotically quasi-nonexpansive mapping asymptotically nonexpansive mapping asymptotically nonexpansive in the intermediate sense |
isfreeaccess_bool |
false |
container_title |
Mathematica Slovaca |
authorswithroles_txt_mv |
Chang, Shih-sen @@aut@@ Joseph Lee, H. W. @@aut@@ Chan, Chi Kin @@aut@@ |
publishDateDaySort_date |
2013-10-01T00:00:00Z |
hierarchy_top_id |
548127344 |
id |
SPR025444107 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR025444107</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403060510.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/s12175-013-0156-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR025444107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12175-013-0156-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Shih-sen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Versita Warsaw and Springer-Verlag Wien 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2007), 128–141], [J. Math. Anal. Appl. 326 (2007), 960–973], [Internat. J. Math. Math. Sci. 2009, Article ID 615107, 17 pp.] and others.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total asymptotically nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total symptotically quasi-nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotically quasi-nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotically nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotically nonexpansive in the intermediate sense</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Joseph Lee, H. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, Chi Kin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematica Slovaca</subfield><subfield code="d">Warsaw : Versita, 2007</subfield><subfield code="g">63(2013), 5 vom: Okt., Seite 1073-1084</subfield><subfield code="w">(DE-627)548127344</subfield><subfield code="w">(DE-600)2393408-6</subfield><subfield code="x">1337-2211</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:5</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1073-1084</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2478/s12175-013-0156-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2013</subfield><subfield code="e">5</subfield><subfield code="c">10</subfield><subfield code="h">1073-1084</subfield></datafield></record></collection>
|
author |
Chang, Shih-sen |
spellingShingle |
Chang, Shih-sen misc total asymptotically nonexpansive mapping misc total symptotically quasi-nonexpansive mapping misc asymptotically quasi-nonexpansive mapping misc asymptotically nonexpansive mapping misc asymptotically nonexpansive in the intermediate sense Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces |
authorStr |
Chang, Shih-sen |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)548127344 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1337-2211 |
topic_title |
Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces total asymptotically nonexpansive mapping (dpeaa)DE-He213 total symptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically quasi-nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive mapping (dpeaa)DE-He213 asymptotically nonexpansive in the intermediate sense (dpeaa)DE-He213 |
topic |
misc total asymptotically nonexpansive mapping misc total symptotically quasi-nonexpansive mapping misc asymptotically quasi-nonexpansive mapping misc asymptotically nonexpansive mapping misc asymptotically nonexpansive in the intermediate sense |
topic_unstemmed |
misc total asymptotically nonexpansive mapping misc total symptotically quasi-nonexpansive mapping misc asymptotically quasi-nonexpansive mapping misc asymptotically nonexpansive mapping misc asymptotically nonexpansive in the intermediate sense |
topic_browse |
misc total asymptotically nonexpansive mapping misc total symptotically quasi-nonexpansive mapping misc asymptotically quasi-nonexpansive mapping misc asymptotically nonexpansive mapping misc asymptotically nonexpansive in the intermediate sense |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Mathematica Slovaca |
hierarchy_parent_id |
548127344 |
hierarchy_top_title |
Mathematica Slovaca |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)548127344 (DE-600)2393408-6 |
title |
Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces |
ctrlnum |
(DE-627)SPR025444107 (SPR)s12175-013-0156-8-e |
title_full |
Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces |
author_sort |
Chang, Shih-sen |
journal |
Mathematica Slovaca |
journalStr |
Mathematica Slovaca |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
1073 |
author_browse |
Chang, Shih-sen Joseph Lee, H. W. Chan, Chi Kin |
container_volume |
63 |
format_se |
Elektronische Aufsätze |
author-letter |
Chang, Shih-sen |
doi_str_mv |
10.2478/s12175-013-0156-8 |
title_sort |
some convergence theorems for total asymptotically nonexpansive mappings in banach spaces |
title_auth |
Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces |
abstract |
Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2007), 128–141], [J. Math. Anal. Appl. 326 (2007), 960–973], [Internat. J. Math. Math. Sci. 2009, Article ID 615107, 17 pp.] and others. © Versita Warsaw and Springer-Verlag Wien 2013 |
abstractGer |
Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2007), 128–141], [J. Math. Anal. Appl. 326 (2007), 960–973], [Internat. J. Math. Math. Sci. 2009, Article ID 615107, 17 pp.] and others. © Versita Warsaw and Springer-Verlag Wien 2013 |
abstract_unstemmed |
Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2007), 128–141], [J. Math. Anal. Appl. 326 (2007), 960–973], [Internat. J. Math. Math. Sci. 2009, Article ID 615107, 17 pp.] and others. © Versita Warsaw and Springer-Verlag Wien 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_150 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_187 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2014 GBV_ILN_2018 GBV_ILN_2088 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4277 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces |
url |
https://dx.doi.org/10.2478/s12175-013-0156-8 |
remote_bool |
true |
author2 |
Joseph Lee, H. W. Chan, Chi Kin |
author2Str |
Joseph Lee, H. W. Chan, Chi Kin |
ppnlink |
548127344 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.2478/s12175-013-0156-8 |
up_date |
2024-07-03T16:02:02.502Z |
_version_ |
1803574336556105728 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR025444107</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230403060510.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.2478/s12175-013-0156-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR025444107</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12175-013-0156-8-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Shih-sen</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some convergence theorems for total asymptotically nonexpansive mappings in Banach spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Versita Warsaw and Springer-Verlag Wien 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The purpose of this paper is to establish some new approximation theorems of common fixed points for a countable family of total asymptotically quasi-nonexpansive mappings in Banach spaces which generalize and improve the corresponding theorems of Chidume et al. [J. Math. Anal. Appl. 333 (2007), 128–141], [J. Math. Anal. Appl. 326 (2007), 960–973], [Internat. J. Math. Math. Sci. 2009, Article ID 615107, 17 pp.] and others.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total asymptotically nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">total symptotically quasi-nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotically quasi-nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotically nonexpansive mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">asymptotically nonexpansive in the intermediate sense</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Joseph Lee, H. W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chan, Chi Kin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mathematica Slovaca</subfield><subfield code="d">Warsaw : Versita, 2007</subfield><subfield code="g">63(2013), 5 vom: Okt., Seite 1073-1084</subfield><subfield code="w">(DE-627)548127344</subfield><subfield code="w">(DE-600)2393408-6</subfield><subfield code="x">1337-2211</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:63</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:5</subfield><subfield code="g">month:10</subfield><subfield code="g">pages:1073-1084</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.2478/s12175-013-0156-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">63</subfield><subfield code="j">2013</subfield><subfield code="e">5</subfield><subfield code="c">10</subfield><subfield code="h">1073-1084</subfield></datafield></record></collection>
|
score |
7.4008656 |