A Variance Decomposition Approach for Risk Assessment of Groundwater Quality
Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens a...
Ausführliche Beschreibung
Autor*in: |
Kumar, Deepak [verfasserIn] Singh, Anshuman [verfasserIn] Jha, Rishi Kumar [verfasserIn] Sahoo, Sunil Kumar [verfasserIn] Jha, Vivekanand [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: Water quality, exposure and health - Dordrecht : Springer Netherlands, 2009, 11(2019), 2 vom: 02. Jan., Seite 139-151 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2019 ; number:2 ; day:02 ; month:01 ; pages:139-151 |
Links: |
---|
DOI / URN: |
10.1007/s12403-018-00293-6 |
---|
Katalog-ID: |
SPR02590731X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR02590731X | ||
003 | DE-627 | ||
005 | 20220111131923.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12403-018-00293-6 |2 doi | |
035 | |a (DE-627)SPR02590731X | ||
035 | |a (SPR)s12403-018-00293-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q ASE |
100 | 1 | |a Kumar, Deepak |e verfasserin |4 aut | |
245 | 1 | 2 | |a A Variance Decomposition Approach for Risk Assessment of Groundwater Quality |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens and adults) were selected for two-way pathway exposure (potential dose and dermal dose) assessment. For uncertainty and sensitivity of inputs variables, a new emerging Sobol sensitivity analysis (SSA) technique was used to determine the relative importance of inputs using Monte Carlo simulation. Three types of effects, first-order effect (FOE), second-order effect (SOE) and total effect (TE) were calculated. The results showed that 96% of the samples analysed were within the standard acceptable level (1.5 mg $ l^{−1} $) of WHO guidelines. The spatial distribution depicts that the eastern and south-eastern parts of the study area have the higher concentrations with the few spots of elevated concentration in the middle of the north and the south-west areas. The mean value of Hazard Index for children in the study region is less than 1, whereas the 95th percentile exceeded the value of 1 for both children and teens. The FOE shows the concentration of fluoride (Cw) is highly sensitive followed by exposure frequency (EF), intake rate ($ IR_{w} $) and body weight (BW). The SOE scores revealed that $ IR_{w} $–BW are the most important input parameters for the assessment of oral health risk. For the dermal model, the highest value of Sobol score was recorded for interactions Cw–SA for adults followed by teens and children. Further, the results show that the older-age groups have more dermal risk than the younger-age groups. The research explores the feasibility of SSA technique to investigate the effects of individual input parameters for health risk model and whether it can be applied to another contaminant. | ||
650 | 4 | |a Groundwater |7 (dpeaa)DE-He213 | |
650 | 4 | |a Sobol sensitivity analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fluoride |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mid-Gangetic plain |7 (dpeaa)DE-He213 | |
700 | 1 | |a Singh, Anshuman |e verfasserin |4 aut | |
700 | 1 | |a Jha, Rishi Kumar |e verfasserin |4 aut | |
700 | 1 | |a Sahoo, Sunil Kumar |e verfasserin |4 aut | |
700 | 1 | |a Jha, Vivekanand |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Water quality, exposure and health |d Dordrecht : Springer Netherlands, 2009 |g 11(2019), 2 vom: 02. Jan., Seite 139-151 |w (DE-627)598790721 |w (DE-600)2491734-5 |x 1876-1666 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2019 |g number:2 |g day:02 |g month:01 |g pages:139-151 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12403-018-00293-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2190 | ||
951 | |a AR | ||
952 | |d 11 |j 2019 |e 2 |b 02 |c 01 |h 139-151 |
author_variant |
d k dk a s as r k j rk rkj s k s sk sks v j vj |
---|---|
matchkey_str |
article:18761666:2019----::vracdcmoiinprahorsassmno |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s12403-018-00293-6 doi (DE-627)SPR02590731X (SPR)s12403-018-00293-6-e DE-627 ger DE-627 rakwb eng 550 ASE Kumar, Deepak verfasserin aut A Variance Decomposition Approach for Risk Assessment of Groundwater Quality 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens and adults) were selected for two-way pathway exposure (potential dose and dermal dose) assessment. For uncertainty and sensitivity of inputs variables, a new emerging Sobol sensitivity analysis (SSA) technique was used to determine the relative importance of inputs using Monte Carlo simulation. Three types of effects, first-order effect (FOE), second-order effect (SOE) and total effect (TE) were calculated. The results showed that 96% of the samples analysed were within the standard acceptable level (1.5 mg $ l^{−1} $) of WHO guidelines. The spatial distribution depicts that the eastern and south-eastern parts of the study area have the higher concentrations with the few spots of elevated concentration in the middle of the north and the south-west areas. The mean value of Hazard Index for children in the study region is less than 1, whereas the 95th percentile exceeded the value of 1 for both children and teens. The FOE shows the concentration of fluoride (Cw) is highly sensitive followed by exposure frequency (EF), intake rate ($ IR_{w} $) and body weight (BW). The SOE scores revealed that $ IR_{w} $–BW are the most important input parameters for the assessment of oral health risk. For the dermal model, the highest value of Sobol score was recorded for interactions Cw–SA for adults followed by teens and children. Further, the results show that the older-age groups have more dermal risk than the younger-age groups. The research explores the feasibility of SSA technique to investigate the effects of individual input parameters for health risk model and whether it can be applied to another contaminant. Groundwater (dpeaa)DE-He213 Sobol sensitivity analysis (dpeaa)DE-He213 Fluoride (dpeaa)DE-He213 Mid-Gangetic plain (dpeaa)DE-He213 Singh, Anshuman verfasserin aut Jha, Rishi Kumar verfasserin aut Sahoo, Sunil Kumar verfasserin aut Jha, Vivekanand verfasserin aut Enthalten in Water quality, exposure and health Dordrecht : Springer Netherlands, 2009 11(2019), 2 vom: 02. Jan., Seite 139-151 (DE-627)598790721 (DE-600)2491734-5 1876-1666 nnns volume:11 year:2019 number:2 day:02 month:01 pages:139-151 https://dx.doi.org/10.1007/s12403-018-00293-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 AR 11 2019 2 02 01 139-151 |
spelling |
10.1007/s12403-018-00293-6 doi (DE-627)SPR02590731X (SPR)s12403-018-00293-6-e DE-627 ger DE-627 rakwb eng 550 ASE Kumar, Deepak verfasserin aut A Variance Decomposition Approach for Risk Assessment of Groundwater Quality 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens and adults) were selected for two-way pathway exposure (potential dose and dermal dose) assessment. For uncertainty and sensitivity of inputs variables, a new emerging Sobol sensitivity analysis (SSA) technique was used to determine the relative importance of inputs using Monte Carlo simulation. Three types of effects, first-order effect (FOE), second-order effect (SOE) and total effect (TE) were calculated. The results showed that 96% of the samples analysed were within the standard acceptable level (1.5 mg $ l^{−1} $) of WHO guidelines. The spatial distribution depicts that the eastern and south-eastern parts of the study area have the higher concentrations with the few spots of elevated concentration in the middle of the north and the south-west areas. The mean value of Hazard Index for children in the study region is less than 1, whereas the 95th percentile exceeded the value of 1 for both children and teens. The FOE shows the concentration of fluoride (Cw) is highly sensitive followed by exposure frequency (EF), intake rate ($ IR_{w} $) and body weight (BW). The SOE scores revealed that $ IR_{w} $–BW are the most important input parameters for the assessment of oral health risk. For the dermal model, the highest value of Sobol score was recorded for interactions Cw–SA for adults followed by teens and children. Further, the results show that the older-age groups have more dermal risk than the younger-age groups. The research explores the feasibility of SSA technique to investigate the effects of individual input parameters for health risk model and whether it can be applied to another contaminant. Groundwater (dpeaa)DE-He213 Sobol sensitivity analysis (dpeaa)DE-He213 Fluoride (dpeaa)DE-He213 Mid-Gangetic plain (dpeaa)DE-He213 Singh, Anshuman verfasserin aut Jha, Rishi Kumar verfasserin aut Sahoo, Sunil Kumar verfasserin aut Jha, Vivekanand verfasserin aut Enthalten in Water quality, exposure and health Dordrecht : Springer Netherlands, 2009 11(2019), 2 vom: 02. Jan., Seite 139-151 (DE-627)598790721 (DE-600)2491734-5 1876-1666 nnns volume:11 year:2019 number:2 day:02 month:01 pages:139-151 https://dx.doi.org/10.1007/s12403-018-00293-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 AR 11 2019 2 02 01 139-151 |
allfields_unstemmed |
10.1007/s12403-018-00293-6 doi (DE-627)SPR02590731X (SPR)s12403-018-00293-6-e DE-627 ger DE-627 rakwb eng 550 ASE Kumar, Deepak verfasserin aut A Variance Decomposition Approach for Risk Assessment of Groundwater Quality 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens and adults) were selected for two-way pathway exposure (potential dose and dermal dose) assessment. For uncertainty and sensitivity of inputs variables, a new emerging Sobol sensitivity analysis (SSA) technique was used to determine the relative importance of inputs using Monte Carlo simulation. Three types of effects, first-order effect (FOE), second-order effect (SOE) and total effect (TE) were calculated. The results showed that 96% of the samples analysed were within the standard acceptable level (1.5 mg $ l^{−1} $) of WHO guidelines. The spatial distribution depicts that the eastern and south-eastern parts of the study area have the higher concentrations with the few spots of elevated concentration in the middle of the north and the south-west areas. The mean value of Hazard Index for children in the study region is less than 1, whereas the 95th percentile exceeded the value of 1 for both children and teens. The FOE shows the concentration of fluoride (Cw) is highly sensitive followed by exposure frequency (EF), intake rate ($ IR_{w} $) and body weight (BW). The SOE scores revealed that $ IR_{w} $–BW are the most important input parameters for the assessment of oral health risk. For the dermal model, the highest value of Sobol score was recorded for interactions Cw–SA for adults followed by teens and children. Further, the results show that the older-age groups have more dermal risk than the younger-age groups. The research explores the feasibility of SSA technique to investigate the effects of individual input parameters for health risk model and whether it can be applied to another contaminant. Groundwater (dpeaa)DE-He213 Sobol sensitivity analysis (dpeaa)DE-He213 Fluoride (dpeaa)DE-He213 Mid-Gangetic plain (dpeaa)DE-He213 Singh, Anshuman verfasserin aut Jha, Rishi Kumar verfasserin aut Sahoo, Sunil Kumar verfasserin aut Jha, Vivekanand verfasserin aut Enthalten in Water quality, exposure and health Dordrecht : Springer Netherlands, 2009 11(2019), 2 vom: 02. Jan., Seite 139-151 (DE-627)598790721 (DE-600)2491734-5 1876-1666 nnns volume:11 year:2019 number:2 day:02 month:01 pages:139-151 https://dx.doi.org/10.1007/s12403-018-00293-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 AR 11 2019 2 02 01 139-151 |
allfieldsGer |
10.1007/s12403-018-00293-6 doi (DE-627)SPR02590731X (SPR)s12403-018-00293-6-e DE-627 ger DE-627 rakwb eng 550 ASE Kumar, Deepak verfasserin aut A Variance Decomposition Approach for Risk Assessment of Groundwater Quality 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens and adults) were selected for two-way pathway exposure (potential dose and dermal dose) assessment. For uncertainty and sensitivity of inputs variables, a new emerging Sobol sensitivity analysis (SSA) technique was used to determine the relative importance of inputs using Monte Carlo simulation. Three types of effects, first-order effect (FOE), second-order effect (SOE) and total effect (TE) were calculated. The results showed that 96% of the samples analysed were within the standard acceptable level (1.5 mg $ l^{−1} $) of WHO guidelines. The spatial distribution depicts that the eastern and south-eastern parts of the study area have the higher concentrations with the few spots of elevated concentration in the middle of the north and the south-west areas. The mean value of Hazard Index for children in the study region is less than 1, whereas the 95th percentile exceeded the value of 1 for both children and teens. The FOE shows the concentration of fluoride (Cw) is highly sensitive followed by exposure frequency (EF), intake rate ($ IR_{w} $) and body weight (BW). The SOE scores revealed that $ IR_{w} $–BW are the most important input parameters for the assessment of oral health risk. For the dermal model, the highest value of Sobol score was recorded for interactions Cw–SA for adults followed by teens and children. Further, the results show that the older-age groups have more dermal risk than the younger-age groups. The research explores the feasibility of SSA technique to investigate the effects of individual input parameters for health risk model and whether it can be applied to another contaminant. Groundwater (dpeaa)DE-He213 Sobol sensitivity analysis (dpeaa)DE-He213 Fluoride (dpeaa)DE-He213 Mid-Gangetic plain (dpeaa)DE-He213 Singh, Anshuman verfasserin aut Jha, Rishi Kumar verfasserin aut Sahoo, Sunil Kumar verfasserin aut Jha, Vivekanand verfasserin aut Enthalten in Water quality, exposure and health Dordrecht : Springer Netherlands, 2009 11(2019), 2 vom: 02. Jan., Seite 139-151 (DE-627)598790721 (DE-600)2491734-5 1876-1666 nnns volume:11 year:2019 number:2 day:02 month:01 pages:139-151 https://dx.doi.org/10.1007/s12403-018-00293-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 AR 11 2019 2 02 01 139-151 |
allfieldsSound |
10.1007/s12403-018-00293-6 doi (DE-627)SPR02590731X (SPR)s12403-018-00293-6-e DE-627 ger DE-627 rakwb eng 550 ASE Kumar, Deepak verfasserin aut A Variance Decomposition Approach for Risk Assessment of Groundwater Quality 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens and adults) were selected for two-way pathway exposure (potential dose and dermal dose) assessment. For uncertainty and sensitivity of inputs variables, a new emerging Sobol sensitivity analysis (SSA) technique was used to determine the relative importance of inputs using Monte Carlo simulation. Three types of effects, first-order effect (FOE), second-order effect (SOE) and total effect (TE) were calculated. The results showed that 96% of the samples analysed were within the standard acceptable level (1.5 mg $ l^{−1} $) of WHO guidelines. The spatial distribution depicts that the eastern and south-eastern parts of the study area have the higher concentrations with the few spots of elevated concentration in the middle of the north and the south-west areas. The mean value of Hazard Index for children in the study region is less than 1, whereas the 95th percentile exceeded the value of 1 for both children and teens. The FOE shows the concentration of fluoride (Cw) is highly sensitive followed by exposure frequency (EF), intake rate ($ IR_{w} $) and body weight (BW). The SOE scores revealed that $ IR_{w} $–BW are the most important input parameters for the assessment of oral health risk. For the dermal model, the highest value of Sobol score was recorded for interactions Cw–SA for adults followed by teens and children. Further, the results show that the older-age groups have more dermal risk than the younger-age groups. The research explores the feasibility of SSA technique to investigate the effects of individual input parameters for health risk model and whether it can be applied to another contaminant. Groundwater (dpeaa)DE-He213 Sobol sensitivity analysis (dpeaa)DE-He213 Fluoride (dpeaa)DE-He213 Mid-Gangetic plain (dpeaa)DE-He213 Singh, Anshuman verfasserin aut Jha, Rishi Kumar verfasserin aut Sahoo, Sunil Kumar verfasserin aut Jha, Vivekanand verfasserin aut Enthalten in Water quality, exposure and health Dordrecht : Springer Netherlands, 2009 11(2019), 2 vom: 02. Jan., Seite 139-151 (DE-627)598790721 (DE-600)2491734-5 1876-1666 nnns volume:11 year:2019 number:2 day:02 month:01 pages:139-151 https://dx.doi.org/10.1007/s12403-018-00293-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 AR 11 2019 2 02 01 139-151 |
language |
English |
source |
Enthalten in Water quality, exposure and health 11(2019), 2 vom: 02. Jan., Seite 139-151 volume:11 year:2019 number:2 day:02 month:01 pages:139-151 |
sourceStr |
Enthalten in Water quality, exposure and health 11(2019), 2 vom: 02. Jan., Seite 139-151 volume:11 year:2019 number:2 day:02 month:01 pages:139-151 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Groundwater Sobol sensitivity analysis Fluoride Mid-Gangetic plain |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Water quality, exposure and health |
authorswithroles_txt_mv |
Kumar, Deepak @@aut@@ Singh, Anshuman @@aut@@ Jha, Rishi Kumar @@aut@@ Sahoo, Sunil Kumar @@aut@@ Jha, Vivekanand @@aut@@ |
publishDateDaySort_date |
2019-01-02T00:00:00Z |
hierarchy_top_id |
598790721 |
dewey-sort |
3550 |
id |
SPR02590731X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02590731X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111131923.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12403-018-00293-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02590731X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12403-018-00293-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kumar, Deepak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Variance Decomposition Approach for Risk Assessment of Groundwater Quality</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens and adults) were selected for two-way pathway exposure (potential dose and dermal dose) assessment. For uncertainty and sensitivity of inputs variables, a new emerging Sobol sensitivity analysis (SSA) technique was used to determine the relative importance of inputs using Monte Carlo simulation. Three types of effects, first-order effect (FOE), second-order effect (SOE) and total effect (TE) were calculated. The results showed that 96% of the samples analysed were within the standard acceptable level (1.5 mg $ l^{−1} $) of WHO guidelines. The spatial distribution depicts that the eastern and south-eastern parts of the study area have the higher concentrations with the few spots of elevated concentration in the middle of the north and the south-west areas. The mean value of Hazard Index for children in the study region is less than 1, whereas the 95th percentile exceeded the value of 1 for both children and teens. The FOE shows the concentration of fluoride (Cw) is highly sensitive followed by exposure frequency (EF), intake rate ($ IR_{w} $) and body weight (BW). The SOE scores revealed that $ IR_{w} $–BW are the most important input parameters for the assessment of oral health risk. For the dermal model, the highest value of Sobol score was recorded for interactions Cw–SA for adults followed by teens and children. Further, the results show that the older-age groups have more dermal risk than the younger-age groups. The research explores the feasibility of SSA technique to investigate the effects of individual input parameters for health risk model and whether it can be applied to another contaminant.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groundwater</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobol sensitivity analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluoride</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mid-Gangetic plain</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Anshuman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jha, Rishi Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sahoo, Sunil Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jha, Vivekanand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water quality, exposure and health</subfield><subfield code="d">Dordrecht : Springer Netherlands, 2009</subfield><subfield code="g">11(2019), 2 vom: 02. Jan., Seite 139-151</subfield><subfield code="w">(DE-627)598790721</subfield><subfield code="w">(DE-600)2491734-5</subfield><subfield code="x">1876-1666</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:139-151</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12403-018-00293-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">01</subfield><subfield code="h">139-151</subfield></datafield></record></collection>
|
author |
Kumar, Deepak |
spellingShingle |
Kumar, Deepak ddc 550 misc Groundwater misc Sobol sensitivity analysis misc Fluoride misc Mid-Gangetic plain A Variance Decomposition Approach for Risk Assessment of Groundwater Quality |
authorStr |
Kumar, Deepak |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)598790721 |
format |
electronic Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1876-1666 |
topic_title |
550 ASE A Variance Decomposition Approach for Risk Assessment of Groundwater Quality Groundwater (dpeaa)DE-He213 Sobol sensitivity analysis (dpeaa)DE-He213 Fluoride (dpeaa)DE-He213 Mid-Gangetic plain (dpeaa)DE-He213 |
topic |
ddc 550 misc Groundwater misc Sobol sensitivity analysis misc Fluoride misc Mid-Gangetic plain |
topic_unstemmed |
ddc 550 misc Groundwater misc Sobol sensitivity analysis misc Fluoride misc Mid-Gangetic plain |
topic_browse |
ddc 550 misc Groundwater misc Sobol sensitivity analysis misc Fluoride misc Mid-Gangetic plain |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Water quality, exposure and health |
hierarchy_parent_id |
598790721 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Water quality, exposure and health |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)598790721 (DE-600)2491734-5 |
title |
A Variance Decomposition Approach for Risk Assessment of Groundwater Quality |
ctrlnum |
(DE-627)SPR02590731X (SPR)s12403-018-00293-6-e |
title_full |
A Variance Decomposition Approach for Risk Assessment of Groundwater Quality |
author_sort |
Kumar, Deepak |
journal |
Water quality, exposure and health |
journalStr |
Water quality, exposure and health |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
139 |
author_browse |
Kumar, Deepak Singh, Anshuman Jha, Rishi Kumar Sahoo, Sunil Kumar Jha, Vivekanand |
container_volume |
11 |
class |
550 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Kumar, Deepak |
doi_str_mv |
10.1007/s12403-018-00293-6 |
dewey-full |
550 |
author2-role |
verfasserin |
title_sort |
variance decomposition approach for risk assessment of groundwater quality |
title_auth |
A Variance Decomposition Approach for Risk Assessment of Groundwater Quality |
abstract |
Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens and adults) were selected for two-way pathway exposure (potential dose and dermal dose) assessment. For uncertainty and sensitivity of inputs variables, a new emerging Sobol sensitivity analysis (SSA) technique was used to determine the relative importance of inputs using Monte Carlo simulation. Three types of effects, first-order effect (FOE), second-order effect (SOE) and total effect (TE) were calculated. The results showed that 96% of the samples analysed were within the standard acceptable level (1.5 mg $ l^{−1} $) of WHO guidelines. The spatial distribution depicts that the eastern and south-eastern parts of the study area have the higher concentrations with the few spots of elevated concentration in the middle of the north and the south-west areas. The mean value of Hazard Index for children in the study region is less than 1, whereas the 95th percentile exceeded the value of 1 for both children and teens. The FOE shows the concentration of fluoride (Cw) is highly sensitive followed by exposure frequency (EF), intake rate ($ IR_{w} $) and body weight (BW). The SOE scores revealed that $ IR_{w} $–BW are the most important input parameters for the assessment of oral health risk. For the dermal model, the highest value of Sobol score was recorded for interactions Cw–SA for adults followed by teens and children. Further, the results show that the older-age groups have more dermal risk than the younger-age groups. The research explores the feasibility of SSA technique to investigate the effects of individual input parameters for health risk model and whether it can be applied to another contaminant. |
abstractGer |
Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens and adults) were selected for two-way pathway exposure (potential dose and dermal dose) assessment. For uncertainty and sensitivity of inputs variables, a new emerging Sobol sensitivity analysis (SSA) technique was used to determine the relative importance of inputs using Monte Carlo simulation. Three types of effects, first-order effect (FOE), second-order effect (SOE) and total effect (TE) were calculated. The results showed that 96% of the samples analysed were within the standard acceptable level (1.5 mg $ l^{−1} $) of WHO guidelines. The spatial distribution depicts that the eastern and south-eastern parts of the study area have the higher concentrations with the few spots of elevated concentration in the middle of the north and the south-west areas. The mean value of Hazard Index for children in the study region is less than 1, whereas the 95th percentile exceeded the value of 1 for both children and teens. The FOE shows the concentration of fluoride (Cw) is highly sensitive followed by exposure frequency (EF), intake rate ($ IR_{w} $) and body weight (BW). The SOE scores revealed that $ IR_{w} $–BW are the most important input parameters for the assessment of oral health risk. For the dermal model, the highest value of Sobol score was recorded for interactions Cw–SA for adults followed by teens and children. Further, the results show that the older-age groups have more dermal risk than the younger-age groups. The research explores the feasibility of SSA technique to investigate the effects of individual input parameters for health risk model and whether it can be applied to another contaminant. |
abstract_unstemmed |
Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens and adults) were selected for two-way pathway exposure (potential dose and dermal dose) assessment. For uncertainty and sensitivity of inputs variables, a new emerging Sobol sensitivity analysis (SSA) technique was used to determine the relative importance of inputs using Monte Carlo simulation. Three types of effects, first-order effect (FOE), second-order effect (SOE) and total effect (TE) were calculated. The results showed that 96% of the samples analysed were within the standard acceptable level (1.5 mg $ l^{−1} $) of WHO guidelines. The spatial distribution depicts that the eastern and south-eastern parts of the study area have the higher concentrations with the few spots of elevated concentration in the middle of the north and the south-west areas. The mean value of Hazard Index for children in the study region is less than 1, whereas the 95th percentile exceeded the value of 1 for both children and teens. The FOE shows the concentration of fluoride (Cw) is highly sensitive followed by exposure frequency (EF), intake rate ($ IR_{w} $) and body weight (BW). The SOE scores revealed that $ IR_{w} $–BW are the most important input parameters for the assessment of oral health risk. For the dermal model, the highest value of Sobol score was recorded for interactions Cw–SA for adults followed by teens and children. Further, the results show that the older-age groups have more dermal risk than the younger-age groups. The research explores the feasibility of SSA technique to investigate the effects of individual input parameters for health risk model and whether it can be applied to another contaminant. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_20 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_110 GBV_ILN_161 GBV_ILN_293 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2055 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2068 GBV_ILN_2106 GBV_ILN_2108 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2190 |
container_issue |
2 |
title_short |
A Variance Decomposition Approach for Risk Assessment of Groundwater Quality |
url |
https://dx.doi.org/10.1007/s12403-018-00293-6 |
remote_bool |
true |
author2 |
Singh, Anshuman Jha, Rishi Kumar Sahoo, Sunil Kumar Jha, Vivekanand |
author2Str |
Singh, Anshuman Jha, Rishi Kumar Sahoo, Sunil Kumar Jha, Vivekanand |
ppnlink |
598790721 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12403-018-00293-6 |
up_date |
2024-07-03T17:45:10.808Z |
_version_ |
1803580825466306560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02590731X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111131923.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12403-018-00293-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02590731X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12403-018-00293-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kumar, Deepak</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A Variance Decomposition Approach for Risk Assessment of Groundwater Quality</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This research focuses on the assessment of fluoride doses in groundwater adopting the mathematical model employed by the USEPA. A total of 456 groundwater samples were tested to assess the spatial distribution of fluoride contamination in the study areas. Three age groups (children, teens and adults) were selected for two-way pathway exposure (potential dose and dermal dose) assessment. For uncertainty and sensitivity of inputs variables, a new emerging Sobol sensitivity analysis (SSA) technique was used to determine the relative importance of inputs using Monte Carlo simulation. Three types of effects, first-order effect (FOE), second-order effect (SOE) and total effect (TE) were calculated. The results showed that 96% of the samples analysed were within the standard acceptable level (1.5 mg $ l^{−1} $) of WHO guidelines. The spatial distribution depicts that the eastern and south-eastern parts of the study area have the higher concentrations with the few spots of elevated concentration in the middle of the north and the south-west areas. The mean value of Hazard Index for children in the study region is less than 1, whereas the 95th percentile exceeded the value of 1 for both children and teens. The FOE shows the concentration of fluoride (Cw) is highly sensitive followed by exposure frequency (EF), intake rate ($ IR_{w} $) and body weight (BW). The SOE scores revealed that $ IR_{w} $–BW are the most important input parameters for the assessment of oral health risk. For the dermal model, the highest value of Sobol score was recorded for interactions Cw–SA for adults followed by teens and children. Further, the results show that the older-age groups have more dermal risk than the younger-age groups. The research explores the feasibility of SSA technique to investigate the effects of individual input parameters for health risk model and whether it can be applied to another contaminant.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Groundwater</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sobol sensitivity analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluoride</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mid-Gangetic plain</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Singh, Anshuman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jha, Rishi Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sahoo, Sunil Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jha, Vivekanand</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Water quality, exposure and health</subfield><subfield code="d">Dordrecht : Springer Netherlands, 2009</subfield><subfield code="g">11(2019), 2 vom: 02. Jan., Seite 139-151</subfield><subfield code="w">(DE-627)598790721</subfield><subfield code="w">(DE-600)2491734-5</subfield><subfield code="x">1876-1666</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:2</subfield><subfield code="g">day:02</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:139-151</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12403-018-00293-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">2</subfield><subfield code="b">02</subfield><subfield code="c">01</subfield><subfield code="h">139-151</subfield></datafield></record></collection>
|
score |
7.401613 |