Modelling travel time uncertainty in urban networks based on floating taxi data
Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In thi...
Ausführliche Beschreibung
Autor*in: |
Bauer, Dietmar [verfasserIn] Tulic, Mirsad [verfasserIn] Scherrer, Wolfgang [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Übergeordnetes Werk: |
Enthalten in: European transport research review - Berlin : Springer, 2008, 11(2019), 1 vom: 13. Nov. |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2019 ; number:1 ; day:13 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/s12544-019-0381-5 |
---|
Katalog-ID: |
SPR026125331 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026125331 | ||
003 | DE-627 | ||
005 | 20220111133527.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12544-019-0381-5 |2 doi | |
035 | |a (DE-627)SPR026125331 | ||
035 | |a (SPR)s12544-019-0381-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 380 |q ASE |
100 | 1 | |a Bauer, Dietmar |e verfasserin |4 aut | |
245 | 1 | 0 | |a Modelling travel time uncertainty in urban networks based on floating taxi data |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
520 | |a Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times, are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed models for the variance of the link travel time prediction errors as well as the correlation between the model errors for different links are derived. The models are validated in depth using two different validation data sets.Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the model errors.Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with increasing distance. Additionally usage of the road network plays a role with high correlation for links along common routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors which is partly validated based on additional data.The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given route in the street network. | ||
650 | 4 | |a Taxi floating car |7 (dpeaa)DE-He213 | |
650 | 4 | |a Travel time uncertainty |7 (dpeaa)DE-He213 | |
650 | 4 | |a Travel time prediction |7 (dpeaa)DE-He213 | |
700 | 1 | |a Tulic, Mirsad |e verfasserin |4 aut | |
700 | 1 | |a Scherrer, Wolfgang |e verfasserin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t European transport research review |d Berlin : Springer, 2008 |g 11(2019), 1 vom: 13. Nov. |w (DE-627)588777951 |w (DE-600)2471004-0 |x 1866-8887 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2019 |g number:1 |g day:13 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12544-019-0381-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_26 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4392 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2019 |e 1 |b 13 |c 11 |
author_variant |
d b db m t mt w s ws |
---|---|
matchkey_str |
article:18668887:2019----::oelntaetmucranynrantokbsd |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1186/s12544-019-0381-5 doi (DE-627)SPR026125331 (SPR)s12544-019-0381-5-e DE-627 ger DE-627 rakwb eng 380 ASE Bauer, Dietmar verfasserin aut Modelling travel time uncertainty in urban networks based on floating taxi data 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times, are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed models for the variance of the link travel time prediction errors as well as the correlation between the model errors for different links are derived. The models are validated in depth using two different validation data sets.Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the model errors.Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with increasing distance. Additionally usage of the road network plays a role with high correlation for links along common routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors which is partly validated based on additional data.The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given route in the street network. Taxi floating car (dpeaa)DE-He213 Travel time uncertainty (dpeaa)DE-He213 Travel time prediction (dpeaa)DE-He213 Tulic, Mirsad verfasserin aut Scherrer, Wolfgang verfasserin aut Enthalten in European transport research review Berlin : Springer, 2008 11(2019), 1 vom: 13. Nov. (DE-627)588777951 (DE-600)2471004-0 1866-8887 nnns volume:11 year:2019 number:1 day:13 month:11 https://dx.doi.org/10.1186/s12544-019-0381-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 1 13 11 |
spelling |
10.1186/s12544-019-0381-5 doi (DE-627)SPR026125331 (SPR)s12544-019-0381-5-e DE-627 ger DE-627 rakwb eng 380 ASE Bauer, Dietmar verfasserin aut Modelling travel time uncertainty in urban networks based on floating taxi data 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times, are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed models for the variance of the link travel time prediction errors as well as the correlation between the model errors for different links are derived. The models are validated in depth using two different validation data sets.Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the model errors.Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with increasing distance. Additionally usage of the road network plays a role with high correlation for links along common routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors which is partly validated based on additional data.The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given route in the street network. Taxi floating car (dpeaa)DE-He213 Travel time uncertainty (dpeaa)DE-He213 Travel time prediction (dpeaa)DE-He213 Tulic, Mirsad verfasserin aut Scherrer, Wolfgang verfasserin aut Enthalten in European transport research review Berlin : Springer, 2008 11(2019), 1 vom: 13. Nov. (DE-627)588777951 (DE-600)2471004-0 1866-8887 nnns volume:11 year:2019 number:1 day:13 month:11 https://dx.doi.org/10.1186/s12544-019-0381-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 1 13 11 |
allfields_unstemmed |
10.1186/s12544-019-0381-5 doi (DE-627)SPR026125331 (SPR)s12544-019-0381-5-e DE-627 ger DE-627 rakwb eng 380 ASE Bauer, Dietmar verfasserin aut Modelling travel time uncertainty in urban networks based on floating taxi data 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times, are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed models for the variance of the link travel time prediction errors as well as the correlation between the model errors for different links are derived. The models are validated in depth using two different validation data sets.Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the model errors.Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with increasing distance. Additionally usage of the road network plays a role with high correlation for links along common routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors which is partly validated based on additional data.The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given route in the street network. Taxi floating car (dpeaa)DE-He213 Travel time uncertainty (dpeaa)DE-He213 Travel time prediction (dpeaa)DE-He213 Tulic, Mirsad verfasserin aut Scherrer, Wolfgang verfasserin aut Enthalten in European transport research review Berlin : Springer, 2008 11(2019), 1 vom: 13. Nov. (DE-627)588777951 (DE-600)2471004-0 1866-8887 nnns volume:11 year:2019 number:1 day:13 month:11 https://dx.doi.org/10.1186/s12544-019-0381-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 1 13 11 |
allfieldsGer |
10.1186/s12544-019-0381-5 doi (DE-627)SPR026125331 (SPR)s12544-019-0381-5-e DE-627 ger DE-627 rakwb eng 380 ASE Bauer, Dietmar verfasserin aut Modelling travel time uncertainty in urban networks based on floating taxi data 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times, are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed models for the variance of the link travel time prediction errors as well as the correlation between the model errors for different links are derived. The models are validated in depth using two different validation data sets.Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the model errors.Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with increasing distance. Additionally usage of the road network plays a role with high correlation for links along common routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors which is partly validated based on additional data.The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given route in the street network. Taxi floating car (dpeaa)DE-He213 Travel time uncertainty (dpeaa)DE-He213 Travel time prediction (dpeaa)DE-He213 Tulic, Mirsad verfasserin aut Scherrer, Wolfgang verfasserin aut Enthalten in European transport research review Berlin : Springer, 2008 11(2019), 1 vom: 13. Nov. (DE-627)588777951 (DE-600)2471004-0 1866-8887 nnns volume:11 year:2019 number:1 day:13 month:11 https://dx.doi.org/10.1186/s12544-019-0381-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 1 13 11 |
allfieldsSound |
10.1186/s12544-019-0381-5 doi (DE-627)SPR026125331 (SPR)s12544-019-0381-5-e DE-627 ger DE-627 rakwb eng 380 ASE Bauer, Dietmar verfasserin aut Modelling travel time uncertainty in urban networks based on floating taxi data 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times, are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed models for the variance of the link travel time prediction errors as well as the correlation between the model errors for different links are derived. The models are validated in depth using two different validation data sets.Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the model errors.Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with increasing distance. Additionally usage of the road network plays a role with high correlation for links along common routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors which is partly validated based on additional data.The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given route in the street network. Taxi floating car (dpeaa)DE-He213 Travel time uncertainty (dpeaa)DE-He213 Travel time prediction (dpeaa)DE-He213 Tulic, Mirsad verfasserin aut Scherrer, Wolfgang verfasserin aut Enthalten in European transport research review Berlin : Springer, 2008 11(2019), 1 vom: 13. Nov. (DE-627)588777951 (DE-600)2471004-0 1866-8887 nnns volume:11 year:2019 number:1 day:13 month:11 https://dx.doi.org/10.1186/s12544-019-0381-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 AR 11 2019 1 13 11 |
language |
English |
source |
Enthalten in European transport research review 11(2019), 1 vom: 13. Nov. volume:11 year:2019 number:1 day:13 month:11 |
sourceStr |
Enthalten in European transport research review 11(2019), 1 vom: 13. Nov. volume:11 year:2019 number:1 day:13 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Taxi floating car Travel time uncertainty Travel time prediction |
dewey-raw |
380 |
isfreeaccess_bool |
true |
container_title |
European transport research review |
authorswithroles_txt_mv |
Bauer, Dietmar @@aut@@ Tulic, Mirsad @@aut@@ Scherrer, Wolfgang @@aut@@ |
publishDateDaySort_date |
2019-11-13T00:00:00Z |
hierarchy_top_id |
588777951 |
dewey-sort |
3380 |
id |
SPR026125331 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026125331</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111133527.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12544-019-0381-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026125331</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12544-019-0381-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bauer, Dietmar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling travel time uncertainty in urban networks based on floating taxi data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times, are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed models for the variance of the link travel time prediction errors as well as the correlation between the model errors for different links are derived. The models are validated in depth using two different validation data sets.Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the model errors.Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with increasing distance. Additionally usage of the road network plays a role with high correlation for links along common routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors which is partly validated based on additional data.The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given route in the street network.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taxi floating car</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Travel time uncertainty</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Travel time prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tulic, Mirsad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scherrer, Wolfgang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European transport research review</subfield><subfield code="d">Berlin : Springer, 2008</subfield><subfield code="g">11(2019), 1 vom: 13. Nov.</subfield><subfield code="w">(DE-627)588777951</subfield><subfield code="w">(DE-600)2471004-0</subfield><subfield code="x">1866-8887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12544-019-0381-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Bauer, Dietmar |
spellingShingle |
Bauer, Dietmar ddc 380 misc Taxi floating car misc Travel time uncertainty misc Travel time prediction Modelling travel time uncertainty in urban networks based on floating taxi data |
authorStr |
Bauer, Dietmar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)588777951 |
format |
electronic Article |
dewey-ones |
380 - Commerce, communications & transportation |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1866-8887 |
topic_title |
380 ASE Modelling travel time uncertainty in urban networks based on floating taxi data Taxi floating car (dpeaa)DE-He213 Travel time uncertainty (dpeaa)DE-He213 Travel time prediction (dpeaa)DE-He213 |
topic |
ddc 380 misc Taxi floating car misc Travel time uncertainty misc Travel time prediction |
topic_unstemmed |
ddc 380 misc Taxi floating car misc Travel time uncertainty misc Travel time prediction |
topic_browse |
ddc 380 misc Taxi floating car misc Travel time uncertainty misc Travel time prediction |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
European transport research review |
hierarchy_parent_id |
588777951 |
dewey-tens |
380 - Commerce, communications & transportation |
hierarchy_top_title |
European transport research review |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)588777951 (DE-600)2471004-0 |
title |
Modelling travel time uncertainty in urban networks based on floating taxi data |
ctrlnum |
(DE-627)SPR026125331 (SPR)s12544-019-0381-5-e |
title_full |
Modelling travel time uncertainty in urban networks based on floating taxi data |
author_sort |
Bauer, Dietmar |
journal |
European transport research review |
journalStr |
European transport research review |
lang_code |
eng |
isOA_bool |
true |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Bauer, Dietmar Tulic, Mirsad Scherrer, Wolfgang |
container_volume |
11 |
class |
380 ASE |
format_se |
Elektronische Aufsätze |
author-letter |
Bauer, Dietmar |
doi_str_mv |
10.1186/s12544-019-0381-5 |
dewey-full |
380 |
author2-role |
verfasserin |
title_sort |
modelling travel time uncertainty in urban networks based on floating taxi data |
title_auth |
Modelling travel time uncertainty in urban networks based on floating taxi data |
abstract |
Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times, are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed models for the variance of the link travel time prediction errors as well as the correlation between the model errors for different links are derived. The models are validated in depth using two different validation data sets.Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the model errors.Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with increasing distance. Additionally usage of the road network plays a role with high correlation for links along common routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors which is partly validated based on additional data.The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given route in the street network. |
abstractGer |
Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times, are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed models for the variance of the link travel time prediction errors as well as the correlation between the model errors for different links are derived. The models are validated in depth using two different validation data sets.Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the model errors.Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with increasing distance. Additionally usage of the road network plays a role with high correlation for links along common routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors which is partly validated based on additional data.The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given route in the street network. |
abstract_unstemmed |
Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times, are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed models for the variance of the link travel time prediction errors as well as the correlation between the model errors for different links are derived. The models are validated in depth using two different validation data sets.Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the model errors.Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with increasing distance. Additionally usage of the road network plays a role with high correlation for links along common routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors which is partly validated based on additional data.The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given route in the street network. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_26 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_2005 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2027 GBV_ILN_2055 GBV_ILN_2111 GBV_ILN_2129 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4392 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Modelling travel time uncertainty in urban networks based on floating taxi data |
url |
https://dx.doi.org/10.1186/s12544-019-0381-5 |
remote_bool |
true |
author2 |
Tulic, Mirsad Scherrer, Wolfgang |
author2Str |
Tulic, Mirsad Scherrer, Wolfgang |
ppnlink |
588777951 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12544-019-0381-5 |
up_date |
2024-07-03T19:01:36.772Z |
_version_ |
1803585634201239552 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026125331</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20220111133527.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12544-019-0381-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026125331</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12544-019-0381-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">380</subfield><subfield code="q">ASE</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bauer, Dietmar</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modelling travel time uncertainty in urban networks based on floating taxi data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The prediction of the uncertainty of route travel time predictions for all possible routes in an urban road network is of importance for example for logistics. Such predictions need to take the essential features of the data set as well as the underlying traffic dynamics into account.In this paper a large floating taxi data set is used in order to derive predictions of route travel time uncertainty based on link travel time uncertainty predictions. Prediction errors, that is actual travel times minus predicted travel times, are differentiated from model errors, that is measured travel times minus predicted travel times. These two errors are related, but not identical, as model errors contain measurement noise while the prediction errors do not. Detailed models for the variance of the link travel time prediction errors as well as the correlation between the model errors for different links are derived. The models are validated in depth using two different validation data sets.Estimates for the variance of prediction errors are obtained. The standardized model error distributions show a remarkable stability, such that modelling the variance appears to be sufficient for quantifying the uncertainty of the model errors.Furthermore we show that the model errors for adjacent links are highly correlated but correlations fade with increasing distance. Additionally usage of the road network plays a role with high correlation for links along common routes and low correlations for links along seldom used routes. We assume identical features for the prediction errors which is partly validated based on additional data.The paper provides a way to estimate the complete distribution of route travel time prediction errors for any given route in the street network.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Taxi floating car</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Travel time uncertainty</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Travel time prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tulic, Mirsad</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Scherrer, Wolfgang</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">European transport research review</subfield><subfield code="d">Berlin : Springer, 2008</subfield><subfield code="g">11(2019), 1 vom: 13. Nov.</subfield><subfield code="w">(DE-627)588777951</subfield><subfield code="w">(DE-600)2471004-0</subfield><subfield code="x">1866-8887</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:13</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12544-019-0381-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_26</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4392</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">13</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.4017105 |