Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres
Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reyno...
Ausführliche Beschreibung
Autor*in: |
Kuwata, Yusuke [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Indian Institute of Technology Madras 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: International Journal of Advances in Engineering Sciences and Applied Mathematics - Springer-Verlag, 2009, 10(2018), 4 vom: 16. Juli, Seite 263-272 |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2018 ; number:4 ; day:16 ; month:07 ; pages:263-272 |
Links: |
---|
DOI / URN: |
10.1007/s12572-018-0223-z |
---|
Katalog-ID: |
SPR026156814 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026156814 | ||
003 | DE-627 | ||
005 | 20230331231620.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12572-018-0223-z |2 doi | |
035 | |a (DE-627)SPR026156814 | ||
035 | |a (SPR)s12572-018-0223-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kuwata, Yusuke |e verfasserin |0 (orcid)0000-0002-9489-2788 |4 aut | |
245 | 1 | 0 | |a Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Indian Institute of Technology Madras 2018 | ||
520 | |a Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reynolds (double) averaged equations. Numerical calculations are conducted by the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM). For the rough surfaces, randomly distributed semi-spheres are considered. Analyzing an integrated double averaged momentum equation, a main contributor to the skin friction coefficient is found to be the turbulence contribution and a second contributor is the drag contribution, and the drag contribution particularly increases with increasing the equivalent roughness. Although the streamwise mean velocity dispersion is significantly induced by the acceleration/deceleration of the streamwise velocity due to the roughness elements, the wall-normal mean velocity dispersion is not significant. Consequently, the off-diagonal component of the dispersive covariant term is far smaller than the Reynolds shear stress and the velocity dispersion thus hardly contributes to an increase in the skin friction coefficient. | ||
650 | 4 | |a Rough wall turbulence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Direct numerical simulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Volume averaging theory |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lattice Boltzmann method |7 (dpeaa)DE-He213 | |
700 | 1 | |a Kawaguchi, Yasuo |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International Journal of Advances in Engineering Sciences and Applied Mathematics |d Springer-Verlag, 2009 |g 10(2018), 4 vom: 16. Juli, Seite 263-272 |w (DE-627)SPR026154293 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2018 |g number:4 |g day:16 |g month:07 |g pages:263-272 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12572-018-0223-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
951 | |a AR | ||
952 | |d 10 |j 2018 |e 4 |b 16 |c 07 |h 263-272 |
author_variant |
y k yk y k yk |
---|---|
matchkey_str |
kuwatayusukekawaguchiyasuo:2018----:ttsiadsusosnknrcinlrgfublnevradmy |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1007/s12572-018-0223-z doi (DE-627)SPR026156814 (SPR)s12572-018-0223-z-e DE-627 ger DE-627 rakwb eng Kuwata, Yusuke verfasserin (orcid)0000-0002-9489-2788 aut Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Institute of Technology Madras 2018 Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reynolds (double) averaged equations. Numerical calculations are conducted by the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM). For the rough surfaces, randomly distributed semi-spheres are considered. Analyzing an integrated double averaged momentum equation, a main contributor to the skin friction coefficient is found to be the turbulence contribution and a second contributor is the drag contribution, and the drag contribution particularly increases with increasing the equivalent roughness. Although the streamwise mean velocity dispersion is significantly induced by the acceleration/deceleration of the streamwise velocity due to the roughness elements, the wall-normal mean velocity dispersion is not significant. Consequently, the off-diagonal component of the dispersive covariant term is far smaller than the Reynolds shear stress and the velocity dispersion thus hardly contributes to an increase in the skin friction coefficient. Rough wall turbulence (dpeaa)DE-He213 Direct numerical simulation (dpeaa)DE-He213 Volume averaging theory (dpeaa)DE-He213 Lattice Boltzmann method (dpeaa)DE-He213 Kawaguchi, Yasuo aut Enthalten in International Journal of Advances in Engineering Sciences and Applied Mathematics Springer-Verlag, 2009 10(2018), 4 vom: 16. Juli, Seite 263-272 (DE-627)SPR026154293 nnns volume:10 year:2018 number:4 day:16 month:07 pages:263-272 https://dx.doi.org/10.1007/s12572-018-0223-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 10 2018 4 16 07 263-272 |
spelling |
10.1007/s12572-018-0223-z doi (DE-627)SPR026156814 (SPR)s12572-018-0223-z-e DE-627 ger DE-627 rakwb eng Kuwata, Yusuke verfasserin (orcid)0000-0002-9489-2788 aut Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Institute of Technology Madras 2018 Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reynolds (double) averaged equations. Numerical calculations are conducted by the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM). For the rough surfaces, randomly distributed semi-spheres are considered. Analyzing an integrated double averaged momentum equation, a main contributor to the skin friction coefficient is found to be the turbulence contribution and a second contributor is the drag contribution, and the drag contribution particularly increases with increasing the equivalent roughness. Although the streamwise mean velocity dispersion is significantly induced by the acceleration/deceleration of the streamwise velocity due to the roughness elements, the wall-normal mean velocity dispersion is not significant. Consequently, the off-diagonal component of the dispersive covariant term is far smaller than the Reynolds shear stress and the velocity dispersion thus hardly contributes to an increase in the skin friction coefficient. Rough wall turbulence (dpeaa)DE-He213 Direct numerical simulation (dpeaa)DE-He213 Volume averaging theory (dpeaa)DE-He213 Lattice Boltzmann method (dpeaa)DE-He213 Kawaguchi, Yasuo aut Enthalten in International Journal of Advances in Engineering Sciences and Applied Mathematics Springer-Verlag, 2009 10(2018), 4 vom: 16. Juli, Seite 263-272 (DE-627)SPR026154293 nnns volume:10 year:2018 number:4 day:16 month:07 pages:263-272 https://dx.doi.org/10.1007/s12572-018-0223-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 10 2018 4 16 07 263-272 |
allfields_unstemmed |
10.1007/s12572-018-0223-z doi (DE-627)SPR026156814 (SPR)s12572-018-0223-z-e DE-627 ger DE-627 rakwb eng Kuwata, Yusuke verfasserin (orcid)0000-0002-9489-2788 aut Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Institute of Technology Madras 2018 Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reynolds (double) averaged equations. Numerical calculations are conducted by the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM). For the rough surfaces, randomly distributed semi-spheres are considered. Analyzing an integrated double averaged momentum equation, a main contributor to the skin friction coefficient is found to be the turbulence contribution and a second contributor is the drag contribution, and the drag contribution particularly increases with increasing the equivalent roughness. Although the streamwise mean velocity dispersion is significantly induced by the acceleration/deceleration of the streamwise velocity due to the roughness elements, the wall-normal mean velocity dispersion is not significant. Consequently, the off-diagonal component of the dispersive covariant term is far smaller than the Reynolds shear stress and the velocity dispersion thus hardly contributes to an increase in the skin friction coefficient. Rough wall turbulence (dpeaa)DE-He213 Direct numerical simulation (dpeaa)DE-He213 Volume averaging theory (dpeaa)DE-He213 Lattice Boltzmann method (dpeaa)DE-He213 Kawaguchi, Yasuo aut Enthalten in International Journal of Advances in Engineering Sciences and Applied Mathematics Springer-Verlag, 2009 10(2018), 4 vom: 16. Juli, Seite 263-272 (DE-627)SPR026154293 nnns volume:10 year:2018 number:4 day:16 month:07 pages:263-272 https://dx.doi.org/10.1007/s12572-018-0223-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 10 2018 4 16 07 263-272 |
allfieldsGer |
10.1007/s12572-018-0223-z doi (DE-627)SPR026156814 (SPR)s12572-018-0223-z-e DE-627 ger DE-627 rakwb eng Kuwata, Yusuke verfasserin (orcid)0000-0002-9489-2788 aut Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Institute of Technology Madras 2018 Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reynolds (double) averaged equations. Numerical calculations are conducted by the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM). For the rough surfaces, randomly distributed semi-spheres are considered. Analyzing an integrated double averaged momentum equation, a main contributor to the skin friction coefficient is found to be the turbulence contribution and a second contributor is the drag contribution, and the drag contribution particularly increases with increasing the equivalent roughness. Although the streamwise mean velocity dispersion is significantly induced by the acceleration/deceleration of the streamwise velocity due to the roughness elements, the wall-normal mean velocity dispersion is not significant. Consequently, the off-diagonal component of the dispersive covariant term is far smaller than the Reynolds shear stress and the velocity dispersion thus hardly contributes to an increase in the skin friction coefficient. Rough wall turbulence (dpeaa)DE-He213 Direct numerical simulation (dpeaa)DE-He213 Volume averaging theory (dpeaa)DE-He213 Lattice Boltzmann method (dpeaa)DE-He213 Kawaguchi, Yasuo aut Enthalten in International Journal of Advances in Engineering Sciences and Applied Mathematics Springer-Verlag, 2009 10(2018), 4 vom: 16. Juli, Seite 263-272 (DE-627)SPR026154293 nnns volume:10 year:2018 number:4 day:16 month:07 pages:263-272 https://dx.doi.org/10.1007/s12572-018-0223-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 10 2018 4 16 07 263-272 |
allfieldsSound |
10.1007/s12572-018-0223-z doi (DE-627)SPR026156814 (SPR)s12572-018-0223-z-e DE-627 ger DE-627 rakwb eng Kuwata, Yusuke verfasserin (orcid)0000-0002-9489-2788 aut Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Indian Institute of Technology Madras 2018 Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reynolds (double) averaged equations. Numerical calculations are conducted by the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM). For the rough surfaces, randomly distributed semi-spheres are considered. Analyzing an integrated double averaged momentum equation, a main contributor to the skin friction coefficient is found to be the turbulence contribution and a second contributor is the drag contribution, and the drag contribution particularly increases with increasing the equivalent roughness. Although the streamwise mean velocity dispersion is significantly induced by the acceleration/deceleration of the streamwise velocity due to the roughness elements, the wall-normal mean velocity dispersion is not significant. Consequently, the off-diagonal component of the dispersive covariant term is far smaller than the Reynolds shear stress and the velocity dispersion thus hardly contributes to an increase in the skin friction coefficient. Rough wall turbulence (dpeaa)DE-He213 Direct numerical simulation (dpeaa)DE-He213 Volume averaging theory (dpeaa)DE-He213 Lattice Boltzmann method (dpeaa)DE-He213 Kawaguchi, Yasuo aut Enthalten in International Journal of Advances in Engineering Sciences and Applied Mathematics Springer-Verlag, 2009 10(2018), 4 vom: 16. Juli, Seite 263-272 (DE-627)SPR026154293 nnns volume:10 year:2018 number:4 day:16 month:07 pages:263-272 https://dx.doi.org/10.1007/s12572-018-0223-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER AR 10 2018 4 16 07 263-272 |
language |
English |
source |
Enthalten in International Journal of Advances in Engineering Sciences and Applied Mathematics 10(2018), 4 vom: 16. Juli, Seite 263-272 volume:10 year:2018 number:4 day:16 month:07 pages:263-272 |
sourceStr |
Enthalten in International Journal of Advances in Engineering Sciences and Applied Mathematics 10(2018), 4 vom: 16. Juli, Seite 263-272 volume:10 year:2018 number:4 day:16 month:07 pages:263-272 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Rough wall turbulence Direct numerical simulation Volume averaging theory Lattice Boltzmann method |
isfreeaccess_bool |
false |
container_title |
International Journal of Advances in Engineering Sciences and Applied Mathematics |
authorswithroles_txt_mv |
Kuwata, Yusuke @@aut@@ Kawaguchi, Yasuo @@aut@@ |
publishDateDaySort_date |
2018-07-16T00:00:00Z |
hierarchy_top_id |
SPR026154293 |
id |
SPR026156814 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026156814</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331231620.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12572-018-0223-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026156814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12572-018-0223-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kuwata, Yusuke</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9489-2788</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Indian Institute of Technology Madras 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reynolds (double) averaged equations. Numerical calculations are conducted by the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM). For the rough surfaces, randomly distributed semi-spheres are considered. Analyzing an integrated double averaged momentum equation, a main contributor to the skin friction coefficient is found to be the turbulence contribution and a second contributor is the drag contribution, and the drag contribution particularly increases with increasing the equivalent roughness. Although the streamwise mean velocity dispersion is significantly induced by the acceleration/deceleration of the streamwise velocity due to the roughness elements, the wall-normal mean velocity dispersion is not significant. Consequently, the off-diagonal component of the dispersive covariant term is far smaller than the Reynolds shear stress and the velocity dispersion thus hardly contributes to an increase in the skin friction coefficient.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rough wall turbulence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Direct numerical simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volume averaging theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice Boltzmann method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kawaguchi, Yasuo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Advances in Engineering Sciences and Applied Mathematics</subfield><subfield code="d">Springer-Verlag, 2009</subfield><subfield code="g">10(2018), 4 vom: 16. Juli, Seite 263-272</subfield><subfield code="w">(DE-627)SPR026154293</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">day:16</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:263-272</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12572-018-0223-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="b">16</subfield><subfield code="c">07</subfield><subfield code="h">263-272</subfield></datafield></record></collection>
|
author |
Kuwata, Yusuke |
spellingShingle |
Kuwata, Yusuke misc Rough wall turbulence misc Direct numerical simulation misc Volume averaging theory misc Lattice Boltzmann method Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres |
authorStr |
Kuwata, Yusuke |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR026154293 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres Rough wall turbulence (dpeaa)DE-He213 Direct numerical simulation (dpeaa)DE-He213 Volume averaging theory (dpeaa)DE-He213 Lattice Boltzmann method (dpeaa)DE-He213 |
topic |
misc Rough wall turbulence misc Direct numerical simulation misc Volume averaging theory misc Lattice Boltzmann method |
topic_unstemmed |
misc Rough wall turbulence misc Direct numerical simulation misc Volume averaging theory misc Lattice Boltzmann method |
topic_browse |
misc Rough wall turbulence misc Direct numerical simulation misc Volume averaging theory misc Lattice Boltzmann method |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Advances in Engineering Sciences and Applied Mathematics |
hierarchy_parent_id |
SPR026154293 |
hierarchy_top_title |
International Journal of Advances in Engineering Sciences and Applied Mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR026154293 |
title |
Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres |
ctrlnum |
(DE-627)SPR026156814 (SPR)s12572-018-0223-z-e |
title_full |
Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres |
author_sort |
Kuwata, Yusuke |
journal |
International Journal of Advances in Engineering Sciences and Applied Mathematics |
journalStr |
International Journal of Advances in Engineering Sciences and Applied Mathematics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
container_start_page |
263 |
author_browse |
Kuwata, Yusuke Kawaguchi, Yasuo |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Kuwata, Yusuke |
doi_str_mv |
10.1007/s12572-018-0223-z |
normlink |
(ORCID)0000-0002-9489-2788 |
normlink_prefix_str_mv |
(orcid)0000-0002-9489-2788 |
title_sort |
statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres |
title_auth |
Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres |
abstract |
Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reynolds (double) averaged equations. Numerical calculations are conducted by the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM). For the rough surfaces, randomly distributed semi-spheres are considered. Analyzing an integrated double averaged momentum equation, a main contributor to the skin friction coefficient is found to be the turbulence contribution and a second contributor is the drag contribution, and the drag contribution particularly increases with increasing the equivalent roughness. Although the streamwise mean velocity dispersion is significantly induced by the acceleration/deceleration of the streamwise velocity due to the roughness elements, the wall-normal mean velocity dispersion is not significant. Consequently, the off-diagonal component of the dispersive covariant term is far smaller than the Reynolds shear stress and the velocity dispersion thus hardly contributes to an increase in the skin friction coefficient. © Indian Institute of Technology Madras 2018 |
abstractGer |
Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reynolds (double) averaged equations. Numerical calculations are conducted by the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM). For the rough surfaces, randomly distributed semi-spheres are considered. Analyzing an integrated double averaged momentum equation, a main contributor to the skin friction coefficient is found to be the turbulence contribution and a second contributor is the drag contribution, and the drag contribution particularly increases with increasing the equivalent roughness. Although the streamwise mean velocity dispersion is significantly induced by the acceleration/deceleration of the streamwise velocity due to the roughness elements, the wall-normal mean velocity dispersion is not significant. Consequently, the off-diagonal component of the dispersive covariant term is far smaller than the Reynolds shear stress and the velocity dispersion thus hardly contributes to an increase in the skin friction coefficient. © Indian Institute of Technology Madras 2018 |
abstract_unstemmed |
Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reynolds (double) averaged equations. Numerical calculations are conducted by the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM). For the rough surfaces, randomly distributed semi-spheres are considered. Analyzing an integrated double averaged momentum equation, a main contributor to the skin friction coefficient is found to be the turbulence contribution and a second contributor is the drag contribution, and the drag contribution particularly increases with increasing the equivalent roughness. Although the streamwise mean velocity dispersion is significantly induced by the acceleration/deceleration of the streamwise velocity due to the roughness elements, the wall-normal mean velocity dispersion is not significant. Consequently, the off-diagonal component of the dispersive covariant term is far smaller than the Reynolds shear stress and the velocity dispersion thus hardly contributes to an increase in the skin friction coefficient. © Indian Institute of Technology Madras 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER |
container_issue |
4 |
title_short |
Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres |
url |
https://dx.doi.org/10.1007/s12572-018-0223-z |
remote_bool |
true |
author2 |
Kawaguchi, Yasuo |
author2Str |
Kawaguchi, Yasuo |
ppnlink |
SPR026154293 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12572-018-0223-z |
up_date |
2024-07-03T19:12:01.201Z |
_version_ |
1803586288958308352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026156814</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331231620.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12572-018-0223-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026156814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12572-018-0223-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kuwata, Yusuke</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9489-2788</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistical discussions on skin frictional drag of turbulence over randomly distributed semi-spheres</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Indian Institute of Technology Madras 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The influence of dynamical effects of rough wall turbulence, namely velocity dispersion, drag force and turbulence, on rough wall skin friction coefficient is statistically discussed by performing direct numerical simulation of rough-walled open channel flows and analyzing spatial and Reynolds (double) averaged equations. Numerical calculations are conducted by the D3Q27 multiple-relaxation-time lattice Boltzmann method (MRT-LBM). For the rough surfaces, randomly distributed semi-spheres are considered. Analyzing an integrated double averaged momentum equation, a main contributor to the skin friction coefficient is found to be the turbulence contribution and a second contributor is the drag contribution, and the drag contribution particularly increases with increasing the equivalent roughness. Although the streamwise mean velocity dispersion is significantly induced by the acceleration/deceleration of the streamwise velocity due to the roughness elements, the wall-normal mean velocity dispersion is not significant. Consequently, the off-diagonal component of the dispersive covariant term is far smaller than the Reynolds shear stress and the velocity dispersion thus hardly contributes to an increase in the skin friction coefficient.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rough wall turbulence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Direct numerical simulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Volume averaging theory</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice Boltzmann method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kawaguchi, Yasuo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Advances in Engineering Sciences and Applied Mathematics</subfield><subfield code="d">Springer-Verlag, 2009</subfield><subfield code="g">10(2018), 4 vom: 16. Juli, Seite 263-272</subfield><subfield code="w">(DE-627)SPR026154293</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:4</subfield><subfield code="g">day:16</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:263-272</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12572-018-0223-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2018</subfield><subfield code="e">4</subfield><subfield code="b">16</subfield><subfield code="c">07</subfield><subfield code="h">263-272</subfield></datafield></record></collection>
|
score |
7.3994865 |