Conditions for stabilizability of linear switched systems
Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop sy...
Ausführliche Beschreibung
Autor*in: |
Minh, Vu Trieu [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
continuous time linear switched systems |
---|
Anmerkung: |
© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: International Journal of Control, Automation and Systems - Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009, 9(2011), 1 vom: Feb., Seite 139-144 |
---|---|
Übergeordnetes Werk: |
volume:9 ; year:2011 ; number:1 ; month:02 ; pages:139-144 |
Links: |
---|
DOI / URN: |
10.1007/s12555-011-0118-2 |
---|
Katalog-ID: |
SPR026336634 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026336634 | ||
003 | DE-627 | ||
005 | 20230331230132.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12555-011-0118-2 |2 doi | |
035 | |a (DE-627)SPR026336634 | ||
035 | |a (SPR)s12555-011-0118-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Minh, Vu Trieu |e verfasserin |4 aut | |
245 | 1 | 0 | |a Conditions for stabilizability of linear switched systems |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011 | ||
520 | |a Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence. | ||
650 | 4 | |a Common Lyapunov matrix |7 (dpeaa)DE-He213 | |
650 | 4 | |a continuous time linear switched systems |7 (dpeaa)DE-He213 | |
650 | 4 | |a discrete time switched linear systems |7 (dpeaa)DE-He213 | |
650 | 4 | |a linear quadratic state feedback regulator |7 (dpeaa)DE-He213 | |
700 | 1 | |a Awang, Mokhtar |4 aut | |
700 | 1 | |a Parman, Setyamartana |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International Journal of Control, Automation and Systems |d Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 |g 9(2011), 1 vom: Feb., Seite 139-144 |w (DE-627)SPR026303256 |7 nnns |
773 | 1 | 8 | |g volume:9 |g year:2011 |g number:1 |g month:02 |g pages:139-144 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12555-011-0118-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_181 | ||
912 | |a GBV_ILN_496 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2060 | ||
912 | |a GBV_ILN_2470 | ||
951 | |a AR | ||
952 | |d 9 |j 2011 |e 1 |c 02 |h 139-144 |
author_variant |
v t m vt vtm m a ma s p sp |
---|---|
matchkey_str |
minhvutrieuawangmokhtarparmansetyamartan:2011----:odtososaiiaiiyfier |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1007/s12555-011-0118-2 doi (DE-627)SPR026336634 (SPR)s12555-011-0118-2-e DE-627 ger DE-627 rakwb eng Minh, Vu Trieu verfasserin aut Conditions for stabilizability of linear switched systems 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011 Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence. Common Lyapunov matrix (dpeaa)DE-He213 continuous time linear switched systems (dpeaa)DE-He213 discrete time switched linear systems (dpeaa)DE-He213 linear quadratic state feedback regulator (dpeaa)DE-He213 Awang, Mokhtar aut Parman, Setyamartana aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 9(2011), 1 vom: Feb., Seite 139-144 (DE-627)SPR026303256 nnns volume:9 year:2011 number:1 month:02 pages:139-144 https://dx.doi.org/10.1007/s12555-011-0118-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 9 2011 1 02 139-144 |
spelling |
10.1007/s12555-011-0118-2 doi (DE-627)SPR026336634 (SPR)s12555-011-0118-2-e DE-627 ger DE-627 rakwb eng Minh, Vu Trieu verfasserin aut Conditions for stabilizability of linear switched systems 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011 Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence. Common Lyapunov matrix (dpeaa)DE-He213 continuous time linear switched systems (dpeaa)DE-He213 discrete time switched linear systems (dpeaa)DE-He213 linear quadratic state feedback regulator (dpeaa)DE-He213 Awang, Mokhtar aut Parman, Setyamartana aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 9(2011), 1 vom: Feb., Seite 139-144 (DE-627)SPR026303256 nnns volume:9 year:2011 number:1 month:02 pages:139-144 https://dx.doi.org/10.1007/s12555-011-0118-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 9 2011 1 02 139-144 |
allfields_unstemmed |
10.1007/s12555-011-0118-2 doi (DE-627)SPR026336634 (SPR)s12555-011-0118-2-e DE-627 ger DE-627 rakwb eng Minh, Vu Trieu verfasserin aut Conditions for stabilizability of linear switched systems 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011 Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence. Common Lyapunov matrix (dpeaa)DE-He213 continuous time linear switched systems (dpeaa)DE-He213 discrete time switched linear systems (dpeaa)DE-He213 linear quadratic state feedback regulator (dpeaa)DE-He213 Awang, Mokhtar aut Parman, Setyamartana aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 9(2011), 1 vom: Feb., Seite 139-144 (DE-627)SPR026303256 nnns volume:9 year:2011 number:1 month:02 pages:139-144 https://dx.doi.org/10.1007/s12555-011-0118-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 9 2011 1 02 139-144 |
allfieldsGer |
10.1007/s12555-011-0118-2 doi (DE-627)SPR026336634 (SPR)s12555-011-0118-2-e DE-627 ger DE-627 rakwb eng Minh, Vu Trieu verfasserin aut Conditions for stabilizability of linear switched systems 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011 Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence. Common Lyapunov matrix (dpeaa)DE-He213 continuous time linear switched systems (dpeaa)DE-He213 discrete time switched linear systems (dpeaa)DE-He213 linear quadratic state feedback regulator (dpeaa)DE-He213 Awang, Mokhtar aut Parman, Setyamartana aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 9(2011), 1 vom: Feb., Seite 139-144 (DE-627)SPR026303256 nnns volume:9 year:2011 number:1 month:02 pages:139-144 https://dx.doi.org/10.1007/s12555-011-0118-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 9 2011 1 02 139-144 |
allfieldsSound |
10.1007/s12555-011-0118-2 doi (DE-627)SPR026336634 (SPR)s12555-011-0118-2-e DE-627 ger DE-627 rakwb eng Minh, Vu Trieu verfasserin aut Conditions for stabilizability of linear switched systems 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011 Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence. Common Lyapunov matrix (dpeaa)DE-He213 continuous time linear switched systems (dpeaa)DE-He213 discrete time switched linear systems (dpeaa)DE-He213 linear quadratic state feedback regulator (dpeaa)DE-He213 Awang, Mokhtar aut Parman, Setyamartana aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 9(2011), 1 vom: Feb., Seite 139-144 (DE-627)SPR026303256 nnns volume:9 year:2011 number:1 month:02 pages:139-144 https://dx.doi.org/10.1007/s12555-011-0118-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 9 2011 1 02 139-144 |
language |
English |
source |
Enthalten in International Journal of Control, Automation and Systems 9(2011), 1 vom: Feb., Seite 139-144 volume:9 year:2011 number:1 month:02 pages:139-144 |
sourceStr |
Enthalten in International Journal of Control, Automation and Systems 9(2011), 1 vom: Feb., Seite 139-144 volume:9 year:2011 number:1 month:02 pages:139-144 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Common Lyapunov matrix continuous time linear switched systems discrete time switched linear systems linear quadratic state feedback regulator |
isfreeaccess_bool |
false |
container_title |
International Journal of Control, Automation and Systems |
authorswithroles_txt_mv |
Minh, Vu Trieu @@aut@@ Awang, Mokhtar @@aut@@ Parman, Setyamartana @@aut@@ |
publishDateDaySort_date |
2011-02-01T00:00:00Z |
hierarchy_top_id |
SPR026303256 |
id |
SPR026336634 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026336634</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331230132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12555-011-0118-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026336634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12555-011-0118-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Minh, Vu Trieu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conditions for stabilizability of linear switched systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Common Lyapunov matrix</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous time linear switched systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete time switched linear systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear quadratic state feedback regulator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Awang, Mokhtar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parman, Setyamartana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Control, Automation and Systems</subfield><subfield code="d">Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009</subfield><subfield code="g">9(2011), 1 vom: Feb., Seite 139-144</subfield><subfield code="w">(DE-627)SPR026303256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:139-144</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12555-011-0118-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2060</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="c">02</subfield><subfield code="h">139-144</subfield></datafield></record></collection>
|
author |
Minh, Vu Trieu |
spellingShingle |
Minh, Vu Trieu misc Common Lyapunov matrix misc continuous time linear switched systems misc discrete time switched linear systems misc linear quadratic state feedback regulator Conditions for stabilizability of linear switched systems |
authorStr |
Minh, Vu Trieu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR026303256 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Conditions for stabilizability of linear switched systems Common Lyapunov matrix (dpeaa)DE-He213 continuous time linear switched systems (dpeaa)DE-He213 discrete time switched linear systems (dpeaa)DE-He213 linear quadratic state feedback regulator (dpeaa)DE-He213 |
topic |
misc Common Lyapunov matrix misc continuous time linear switched systems misc discrete time switched linear systems misc linear quadratic state feedback regulator |
topic_unstemmed |
misc Common Lyapunov matrix misc continuous time linear switched systems misc discrete time switched linear systems misc linear quadratic state feedback regulator |
topic_browse |
misc Common Lyapunov matrix misc continuous time linear switched systems misc discrete time switched linear systems misc linear quadratic state feedback regulator |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Control, Automation and Systems |
hierarchy_parent_id |
SPR026303256 |
hierarchy_top_title |
International Journal of Control, Automation and Systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR026303256 |
title |
Conditions for stabilizability of linear switched systems |
ctrlnum |
(DE-627)SPR026336634 (SPR)s12555-011-0118-2-e |
title_full |
Conditions for stabilizability of linear switched systems |
author_sort |
Minh, Vu Trieu |
journal |
International Journal of Control, Automation and Systems |
journalStr |
International Journal of Control, Automation and Systems |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
container_start_page |
139 |
author_browse |
Minh, Vu Trieu Awang, Mokhtar Parman, Setyamartana |
container_volume |
9 |
format_se |
Elektronische Aufsätze |
author-letter |
Minh, Vu Trieu |
doi_str_mv |
10.1007/s12555-011-0118-2 |
title_sort |
conditions for stabilizability of linear switched systems |
title_auth |
Conditions for stabilizability of linear switched systems |
abstract |
Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence. © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011 |
abstractGer |
Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence. © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011 |
abstract_unstemmed |
Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence. © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 |
container_issue |
1 |
title_short |
Conditions for stabilizability of linear switched systems |
url |
https://dx.doi.org/10.1007/s12555-011-0118-2 |
remote_bool |
true |
author2 |
Awang, Mokhtar Parman, Setyamartana |
author2Str |
Awang, Mokhtar Parman, Setyamartana |
ppnlink |
SPR026303256 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12555-011-0118-2 |
up_date |
2024-07-03T20:19:42.620Z |
_version_ |
1803590547668992000 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026336634</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331230132.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12555-011-0118-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026336634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12555-011-0118-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Minh, Vu Trieu</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conditions for stabilizability of linear switched systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Common Lyapunov matrix</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">continuous time linear switched systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">discrete time switched linear systems</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear quadratic state feedback regulator</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Awang, Mokhtar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parman, Setyamartana</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Control, Automation and Systems</subfield><subfield code="d">Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009</subfield><subfield code="g">9(2011), 1 vom: Feb., Seite 139-144</subfield><subfield code="w">(DE-627)SPR026303256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:9</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:139-144</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12555-011-0118-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2060</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">9</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="c">02</subfield><subfield code="h">139-144</subfield></datafield></record></collection>
|
score |
7.4008236 |