Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems
Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed wh...
Ausführliche Beschreibung
Autor*in: |
Wang, Wei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
Discrete-time singular switched system |
---|
Anmerkung: |
© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: International Journal of Control, Automation and Systems - Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009, 11(2013), 6 vom: 29. Nov., Seite 1138-1148 |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2013 ; number:6 ; day:29 ; month:11 ; pages:1138-1148 |
Links: |
---|
DOI / URN: |
10.1007/s12555-012-0550-y |
---|
Katalog-ID: |
SPR026374455 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026374455 | ||
003 | DE-627 | ||
005 | 20230331230221.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12555-012-0550-y |2 doi | |
035 | |a (DE-627)SPR026374455 | ||
035 | |a (SPR)s12555-012-0550-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wang, Wei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013 | ||
520 | |a Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed which guarantee that the nonlinear discrete-time singular switched systems are regular, causal, have unique solution in a neighborhood of the origin, and are uniformly asymptotically stable. Then, with these conditions, and based on singular value decomposition approach, the design method of static output feedback controllers is given. Last, numerical examples are provided to illustrate the effectiveness of the proposed methods. | ||
650 | 4 | |a Discrete-time singular switched system |7 (dpeaa)DE-He213 | |
650 | 4 | |a linear matrix inequality (LMI) |7 (dpeaa)DE-He213 | |
650 | 4 | |a nonlinear |7 (dpeaa)DE-He213 | |
650 | 4 | |a stability |7 (dpeaa)DE-He213 | |
650 | 4 | |a static output feedback stabilization |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ma, Shuping |4 aut | |
700 | 1 | |a Zhang, Chenghui |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International Journal of Control, Automation and Systems |d Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 |g 11(2013), 6 vom: 29. Nov., Seite 1138-1148 |w (DE-627)SPR026303256 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2013 |g number:6 |g day:29 |g month:11 |g pages:1138-1148 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12555-012-0550-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_181 | ||
912 | |a GBV_ILN_496 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2060 | ||
912 | |a GBV_ILN_2470 | ||
951 | |a AR | ||
952 | |d 11 |j 2013 |e 6 |b 29 |c 11 |h 1138-1148 |
author_variant |
w w ww s m sm c z cz |
---|---|
matchkey_str |
wangweimashupingzhangchenghui:2013----:tbltadttcuptedaktblztofrcasfolnadsrtt |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1007/s12555-012-0550-y doi (DE-627)SPR026374455 (SPR)s12555-012-0550-y-e DE-627 ger DE-627 rakwb eng Wang, Wei verfasserin aut Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013 Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed which guarantee that the nonlinear discrete-time singular switched systems are regular, causal, have unique solution in a neighborhood of the origin, and are uniformly asymptotically stable. Then, with these conditions, and based on singular value decomposition approach, the design method of static output feedback controllers is given. Last, numerical examples are provided to illustrate the effectiveness of the proposed methods. Discrete-time singular switched system (dpeaa)DE-He213 linear matrix inequality (LMI) (dpeaa)DE-He213 nonlinear (dpeaa)DE-He213 stability (dpeaa)DE-He213 static output feedback stabilization (dpeaa)DE-He213 Ma, Shuping aut Zhang, Chenghui aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 11(2013), 6 vom: 29. Nov., Seite 1138-1148 (DE-627)SPR026303256 nnns volume:11 year:2013 number:6 day:29 month:11 pages:1138-1148 https://dx.doi.org/10.1007/s12555-012-0550-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 11 2013 6 29 11 1138-1148 |
spelling |
10.1007/s12555-012-0550-y doi (DE-627)SPR026374455 (SPR)s12555-012-0550-y-e DE-627 ger DE-627 rakwb eng Wang, Wei verfasserin aut Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013 Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed which guarantee that the nonlinear discrete-time singular switched systems are regular, causal, have unique solution in a neighborhood of the origin, and are uniformly asymptotically stable. Then, with these conditions, and based on singular value decomposition approach, the design method of static output feedback controllers is given. Last, numerical examples are provided to illustrate the effectiveness of the proposed methods. Discrete-time singular switched system (dpeaa)DE-He213 linear matrix inequality (LMI) (dpeaa)DE-He213 nonlinear (dpeaa)DE-He213 stability (dpeaa)DE-He213 static output feedback stabilization (dpeaa)DE-He213 Ma, Shuping aut Zhang, Chenghui aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 11(2013), 6 vom: 29. Nov., Seite 1138-1148 (DE-627)SPR026303256 nnns volume:11 year:2013 number:6 day:29 month:11 pages:1138-1148 https://dx.doi.org/10.1007/s12555-012-0550-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 11 2013 6 29 11 1138-1148 |
allfields_unstemmed |
10.1007/s12555-012-0550-y doi (DE-627)SPR026374455 (SPR)s12555-012-0550-y-e DE-627 ger DE-627 rakwb eng Wang, Wei verfasserin aut Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013 Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed which guarantee that the nonlinear discrete-time singular switched systems are regular, causal, have unique solution in a neighborhood of the origin, and are uniformly asymptotically stable. Then, with these conditions, and based on singular value decomposition approach, the design method of static output feedback controllers is given. Last, numerical examples are provided to illustrate the effectiveness of the proposed methods. Discrete-time singular switched system (dpeaa)DE-He213 linear matrix inequality (LMI) (dpeaa)DE-He213 nonlinear (dpeaa)DE-He213 stability (dpeaa)DE-He213 static output feedback stabilization (dpeaa)DE-He213 Ma, Shuping aut Zhang, Chenghui aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 11(2013), 6 vom: 29. Nov., Seite 1138-1148 (DE-627)SPR026303256 nnns volume:11 year:2013 number:6 day:29 month:11 pages:1138-1148 https://dx.doi.org/10.1007/s12555-012-0550-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 11 2013 6 29 11 1138-1148 |
allfieldsGer |
10.1007/s12555-012-0550-y doi (DE-627)SPR026374455 (SPR)s12555-012-0550-y-e DE-627 ger DE-627 rakwb eng Wang, Wei verfasserin aut Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013 Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed which guarantee that the nonlinear discrete-time singular switched systems are regular, causal, have unique solution in a neighborhood of the origin, and are uniformly asymptotically stable. Then, with these conditions, and based on singular value decomposition approach, the design method of static output feedback controllers is given. Last, numerical examples are provided to illustrate the effectiveness of the proposed methods. Discrete-time singular switched system (dpeaa)DE-He213 linear matrix inequality (LMI) (dpeaa)DE-He213 nonlinear (dpeaa)DE-He213 stability (dpeaa)DE-He213 static output feedback stabilization (dpeaa)DE-He213 Ma, Shuping aut Zhang, Chenghui aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 11(2013), 6 vom: 29. Nov., Seite 1138-1148 (DE-627)SPR026303256 nnns volume:11 year:2013 number:6 day:29 month:11 pages:1138-1148 https://dx.doi.org/10.1007/s12555-012-0550-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 11 2013 6 29 11 1138-1148 |
allfieldsSound |
10.1007/s12555-012-0550-y doi (DE-627)SPR026374455 (SPR)s12555-012-0550-y-e DE-627 ger DE-627 rakwb eng Wang, Wei verfasserin aut Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013 Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed which guarantee that the nonlinear discrete-time singular switched systems are regular, causal, have unique solution in a neighborhood of the origin, and are uniformly asymptotically stable. Then, with these conditions, and based on singular value decomposition approach, the design method of static output feedback controllers is given. Last, numerical examples are provided to illustrate the effectiveness of the proposed methods. Discrete-time singular switched system (dpeaa)DE-He213 linear matrix inequality (LMI) (dpeaa)DE-He213 nonlinear (dpeaa)DE-He213 stability (dpeaa)DE-He213 static output feedback stabilization (dpeaa)DE-He213 Ma, Shuping aut Zhang, Chenghui aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 11(2013), 6 vom: 29. Nov., Seite 1138-1148 (DE-627)SPR026303256 nnns volume:11 year:2013 number:6 day:29 month:11 pages:1138-1148 https://dx.doi.org/10.1007/s12555-012-0550-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 11 2013 6 29 11 1138-1148 |
language |
English |
source |
Enthalten in International Journal of Control, Automation and Systems 11(2013), 6 vom: 29. Nov., Seite 1138-1148 volume:11 year:2013 number:6 day:29 month:11 pages:1138-1148 |
sourceStr |
Enthalten in International Journal of Control, Automation and Systems 11(2013), 6 vom: 29. Nov., Seite 1138-1148 volume:11 year:2013 number:6 day:29 month:11 pages:1138-1148 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Discrete-time singular switched system linear matrix inequality (LMI) nonlinear stability static output feedback stabilization |
isfreeaccess_bool |
false |
container_title |
International Journal of Control, Automation and Systems |
authorswithroles_txt_mv |
Wang, Wei @@aut@@ Ma, Shuping @@aut@@ Zhang, Chenghui @@aut@@ |
publishDateDaySort_date |
2013-11-29T00:00:00Z |
hierarchy_top_id |
SPR026303256 |
id |
SPR026374455 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026374455</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331230221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12555-012-0550-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026374455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12555-012-0550-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed which guarantee that the nonlinear discrete-time singular switched systems are regular, causal, have unique solution in a neighborhood of the origin, and are uniformly asymptotically stable. Then, with these conditions, and based on singular value decomposition approach, the design method of static output feedback controllers is given. Last, numerical examples are provided to illustrate the effectiveness of the proposed methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete-time singular switched system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear matrix inequality (LMI)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">static output feedback stabilization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Shuping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Chenghui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Control, Automation and Systems</subfield><subfield code="d">Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009</subfield><subfield code="g">11(2013), 6 vom: 29. Nov., Seite 1138-1148</subfield><subfield code="w">(DE-627)SPR026303256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:6</subfield><subfield code="g">day:29</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1138-1148</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12555-012-0550-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2060</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2013</subfield><subfield code="e">6</subfield><subfield code="b">29</subfield><subfield code="c">11</subfield><subfield code="h">1138-1148</subfield></datafield></record></collection>
|
author |
Wang, Wei |
spellingShingle |
Wang, Wei misc Discrete-time singular switched system misc linear matrix inequality (LMI) misc nonlinear misc stability misc static output feedback stabilization Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems |
authorStr |
Wang, Wei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR026303256 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems Discrete-time singular switched system (dpeaa)DE-He213 linear matrix inequality (LMI) (dpeaa)DE-He213 nonlinear (dpeaa)DE-He213 stability (dpeaa)DE-He213 static output feedback stabilization (dpeaa)DE-He213 |
topic |
misc Discrete-time singular switched system misc linear matrix inequality (LMI) misc nonlinear misc stability misc static output feedback stabilization |
topic_unstemmed |
misc Discrete-time singular switched system misc linear matrix inequality (LMI) misc nonlinear misc stability misc static output feedback stabilization |
topic_browse |
misc Discrete-time singular switched system misc linear matrix inequality (LMI) misc nonlinear misc stability misc static output feedback stabilization |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Control, Automation and Systems |
hierarchy_parent_id |
SPR026303256 |
hierarchy_top_title |
International Journal of Control, Automation and Systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR026303256 |
title |
Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems |
ctrlnum |
(DE-627)SPR026374455 (SPR)s12555-012-0550-y-e |
title_full |
Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems |
author_sort |
Wang, Wei |
journal |
International Journal of Control, Automation and Systems |
journalStr |
International Journal of Control, Automation and Systems |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
container_start_page |
1138 |
author_browse |
Wang, Wei Ma, Shuping Zhang, Chenghui |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Wei |
doi_str_mv |
10.1007/s12555-012-0550-y |
title_sort |
stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems |
title_auth |
Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems |
abstract |
Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed which guarantee that the nonlinear discrete-time singular switched systems are regular, causal, have unique solution in a neighborhood of the origin, and are uniformly asymptotically stable. Then, with these conditions, and based on singular value decomposition approach, the design method of static output feedback controllers is given. Last, numerical examples are provided to illustrate the effectiveness of the proposed methods. © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013 |
abstractGer |
Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed which guarantee that the nonlinear discrete-time singular switched systems are regular, causal, have unique solution in a neighborhood of the origin, and are uniformly asymptotically stable. Then, with these conditions, and based on singular value decomposition approach, the design method of static output feedback controllers is given. Last, numerical examples are provided to illustrate the effectiveness of the proposed methods. © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013 |
abstract_unstemmed |
Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed which guarantee that the nonlinear discrete-time singular switched systems are regular, causal, have unique solution in a neighborhood of the origin, and are uniformly asymptotically stable. Then, with these conditions, and based on singular value decomposition approach, the design method of static output feedback controllers is given. Last, numerical examples are provided to illustrate the effectiveness of the proposed methods. © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 |
container_issue |
6 |
title_short |
Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems |
url |
https://dx.doi.org/10.1007/s12555-012-0550-y |
remote_bool |
true |
author2 |
Ma, Shuping Zhang, Chenghui |
author2Str |
Ma, Shuping Zhang, Chenghui |
ppnlink |
SPR026303256 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12555-012-0550-y |
up_date |
2024-07-03T20:32:36.590Z |
_version_ |
1803591359232212992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026374455</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331230221.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12555-012-0550-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026374455</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12555-012-0550-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Wei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability and static output feedback stabilization for a class of nonlinear discrete-time singular switched systems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, the stability and static output feedback stabilization problems for a class of nonlinear discrete-time singular switched systems are discussed. First, based on Lyapunov theory and the implicit function theorem, linear matrix inequalities sufficient conditions are developed which guarantee that the nonlinear discrete-time singular switched systems are regular, causal, have unique solution in a neighborhood of the origin, and are uniformly asymptotically stable. Then, with these conditions, and based on singular value decomposition approach, the design method of static output feedback controllers is given. Last, numerical examples are provided to illustrate the effectiveness of the proposed methods.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete-time singular switched system</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">linear matrix inequality (LMI)</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">nonlinear</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">static output feedback stabilization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Shuping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Chenghui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Control, Automation and Systems</subfield><subfield code="d">Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009</subfield><subfield code="g">11(2013), 6 vom: 29. Nov., Seite 1138-1148</subfield><subfield code="w">(DE-627)SPR026303256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:6</subfield><subfield code="g">day:29</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:1138-1148</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12555-012-0550-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2060</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2013</subfield><subfield code="e">6</subfield><subfield code="b">29</subfield><subfield code="c">11</subfield><subfield code="h">1138-1148</subfield></datafield></record></collection>
|
score |
7.4027786 |