Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part
Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonli...
Ausführliche Beschreibung
Autor*in: |
Chang, Wen-Jer [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
Individual state variance constraint and passivity constraint |
---|
Anmerkung: |
© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: International Journal of Control, Automation and Systems - Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009, 15(2017), 4 vom: 10. Juli, Seite 1901-1915 |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2017 ; number:4 ; day:10 ; month:07 ; pages:1901-1915 |
Links: |
---|
DOI / URN: |
10.1007/s12555-016-9404-3 |
---|
Katalog-ID: |
SPR026434822 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026434822 | ||
003 | DE-627 | ||
005 | 20230331230348.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12555-016-9404-3 |2 doi | |
035 | |a (DE-627)SPR026434822 | ||
035 | |a (SPR)s12555-016-9404-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Chang, Wen-Jer |e verfasserin |4 aut | |
245 | 1 | 0 | |a Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017 | ||
520 | |a Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonlinear plant is transformed into a class of linear systems. Applying a Sliding Mode Fuzzy Control (SMFC) scheme, the designed controller causes the closed-loop system converging to the sliding surface and achieving the required control performance. For the control performance, the concepts of stability, individual state variance and passivity constraints are introduced for the sliding mode fuzzy control system. To apply convex optimal programming algorithm, some sufficient conditions derived in this paper are reduced to Linear Matrix Inequality (LMI) problem. At last, two simulation examples are proposed to demonstrate the applicability and usefulness of the proposed design method. One of the examples is to discuss the conservatism of this paper. Another is to show that the discrete truck-trailer system controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints. | ||
650 | 4 | |a Individual state variance constraint and passivity constraint |7 (dpeaa)DE-He213 | |
650 | 4 | |a sliding mode fuzzy control |7 (dpeaa)DE-He213 | |
650 | 4 | |a Takagi-Sugeno |7 (dpeaa)DE-He213 | |
650 | 4 | |a fuzzy model |7 (dpeaa)DE-He213 | |
700 | 1 | |a Hsu, Feng-Ling |4 aut | |
700 | 1 | |a Ku, Cheung-Chieh |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International Journal of Control, Automation and Systems |d Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 |g 15(2017), 4 vom: 10. Juli, Seite 1901-1915 |w (DE-627)SPR026303256 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2017 |g number:4 |g day:10 |g month:07 |g pages:1901-1915 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12555-016-9404-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_181 | ||
912 | |a GBV_ILN_496 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2060 | ||
912 | |a GBV_ILN_2470 | ||
951 | |a AR | ||
952 | |d 15 |j 2017 |e 4 |b 10 |c 07 |h 1901-1915 |
author_variant |
w j c wjc f l h flh c c k cck |
---|---|
matchkey_str |
changwenjerhsufenglingkucheungchieh:2017----:opepromneotouigldnmdfzyprahodsrttmnnierytmvasu |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s12555-016-9404-3 doi (DE-627)SPR026434822 (SPR)s12555-016-9404-3-e DE-627 ger DE-627 rakwb eng Chang, Wen-Jer verfasserin aut Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017 Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonlinear plant is transformed into a class of linear systems. Applying a Sliding Mode Fuzzy Control (SMFC) scheme, the designed controller causes the closed-loop system converging to the sliding surface and achieving the required control performance. For the control performance, the concepts of stability, individual state variance and passivity constraints are introduced for the sliding mode fuzzy control system. To apply convex optimal programming algorithm, some sufficient conditions derived in this paper are reduced to Linear Matrix Inequality (LMI) problem. At last, two simulation examples are proposed to demonstrate the applicability and usefulness of the proposed design method. One of the examples is to discuss the conservatism of this paper. Another is to show that the discrete truck-trailer system controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints. Individual state variance constraint and passivity constraint (dpeaa)DE-He213 sliding mode fuzzy control (dpeaa)DE-He213 Takagi-Sugeno (dpeaa)DE-He213 fuzzy model (dpeaa)DE-He213 Hsu, Feng-Ling aut Ku, Cheung-Chieh aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 15(2017), 4 vom: 10. Juli, Seite 1901-1915 (DE-627)SPR026303256 nnns volume:15 year:2017 number:4 day:10 month:07 pages:1901-1915 https://dx.doi.org/10.1007/s12555-016-9404-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 15 2017 4 10 07 1901-1915 |
spelling |
10.1007/s12555-016-9404-3 doi (DE-627)SPR026434822 (SPR)s12555-016-9404-3-e DE-627 ger DE-627 rakwb eng Chang, Wen-Jer verfasserin aut Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017 Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonlinear plant is transformed into a class of linear systems. Applying a Sliding Mode Fuzzy Control (SMFC) scheme, the designed controller causes the closed-loop system converging to the sliding surface and achieving the required control performance. For the control performance, the concepts of stability, individual state variance and passivity constraints are introduced for the sliding mode fuzzy control system. To apply convex optimal programming algorithm, some sufficient conditions derived in this paper are reduced to Linear Matrix Inequality (LMI) problem. At last, two simulation examples are proposed to demonstrate the applicability and usefulness of the proposed design method. One of the examples is to discuss the conservatism of this paper. Another is to show that the discrete truck-trailer system controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints. Individual state variance constraint and passivity constraint (dpeaa)DE-He213 sliding mode fuzzy control (dpeaa)DE-He213 Takagi-Sugeno (dpeaa)DE-He213 fuzzy model (dpeaa)DE-He213 Hsu, Feng-Ling aut Ku, Cheung-Chieh aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 15(2017), 4 vom: 10. Juli, Seite 1901-1915 (DE-627)SPR026303256 nnns volume:15 year:2017 number:4 day:10 month:07 pages:1901-1915 https://dx.doi.org/10.1007/s12555-016-9404-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 15 2017 4 10 07 1901-1915 |
allfields_unstemmed |
10.1007/s12555-016-9404-3 doi (DE-627)SPR026434822 (SPR)s12555-016-9404-3-e DE-627 ger DE-627 rakwb eng Chang, Wen-Jer verfasserin aut Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017 Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonlinear plant is transformed into a class of linear systems. Applying a Sliding Mode Fuzzy Control (SMFC) scheme, the designed controller causes the closed-loop system converging to the sliding surface and achieving the required control performance. For the control performance, the concepts of stability, individual state variance and passivity constraints are introduced for the sliding mode fuzzy control system. To apply convex optimal programming algorithm, some sufficient conditions derived in this paper are reduced to Linear Matrix Inequality (LMI) problem. At last, two simulation examples are proposed to demonstrate the applicability and usefulness of the proposed design method. One of the examples is to discuss the conservatism of this paper. Another is to show that the discrete truck-trailer system controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints. Individual state variance constraint and passivity constraint (dpeaa)DE-He213 sliding mode fuzzy control (dpeaa)DE-He213 Takagi-Sugeno (dpeaa)DE-He213 fuzzy model (dpeaa)DE-He213 Hsu, Feng-Ling aut Ku, Cheung-Chieh aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 15(2017), 4 vom: 10. Juli, Seite 1901-1915 (DE-627)SPR026303256 nnns volume:15 year:2017 number:4 day:10 month:07 pages:1901-1915 https://dx.doi.org/10.1007/s12555-016-9404-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 15 2017 4 10 07 1901-1915 |
allfieldsGer |
10.1007/s12555-016-9404-3 doi (DE-627)SPR026434822 (SPR)s12555-016-9404-3-e DE-627 ger DE-627 rakwb eng Chang, Wen-Jer verfasserin aut Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017 Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonlinear plant is transformed into a class of linear systems. Applying a Sliding Mode Fuzzy Control (SMFC) scheme, the designed controller causes the closed-loop system converging to the sliding surface and achieving the required control performance. For the control performance, the concepts of stability, individual state variance and passivity constraints are introduced for the sliding mode fuzzy control system. To apply convex optimal programming algorithm, some sufficient conditions derived in this paper are reduced to Linear Matrix Inequality (LMI) problem. At last, two simulation examples are proposed to demonstrate the applicability and usefulness of the proposed design method. One of the examples is to discuss the conservatism of this paper. Another is to show that the discrete truck-trailer system controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints. Individual state variance constraint and passivity constraint (dpeaa)DE-He213 sliding mode fuzzy control (dpeaa)DE-He213 Takagi-Sugeno (dpeaa)DE-He213 fuzzy model (dpeaa)DE-He213 Hsu, Feng-Ling aut Ku, Cheung-Chieh aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 15(2017), 4 vom: 10. Juli, Seite 1901-1915 (DE-627)SPR026303256 nnns volume:15 year:2017 number:4 day:10 month:07 pages:1901-1915 https://dx.doi.org/10.1007/s12555-016-9404-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 15 2017 4 10 07 1901-1915 |
allfieldsSound |
10.1007/s12555-016-9404-3 doi (DE-627)SPR026434822 (SPR)s12555-016-9404-3-e DE-627 ger DE-627 rakwb eng Chang, Wen-Jer verfasserin aut Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017 Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonlinear plant is transformed into a class of linear systems. Applying a Sliding Mode Fuzzy Control (SMFC) scheme, the designed controller causes the closed-loop system converging to the sliding surface and achieving the required control performance. For the control performance, the concepts of stability, individual state variance and passivity constraints are introduced for the sliding mode fuzzy control system. To apply convex optimal programming algorithm, some sufficient conditions derived in this paper are reduced to Linear Matrix Inequality (LMI) problem. At last, two simulation examples are proposed to demonstrate the applicability and usefulness of the proposed design method. One of the examples is to discuss the conservatism of this paper. Another is to show that the discrete truck-trailer system controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints. Individual state variance constraint and passivity constraint (dpeaa)DE-He213 sliding mode fuzzy control (dpeaa)DE-He213 Takagi-Sugeno (dpeaa)DE-He213 fuzzy model (dpeaa)DE-He213 Hsu, Feng-Ling aut Ku, Cheung-Chieh aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 15(2017), 4 vom: 10. Juli, Seite 1901-1915 (DE-627)SPR026303256 nnns volume:15 year:2017 number:4 day:10 month:07 pages:1901-1915 https://dx.doi.org/10.1007/s12555-016-9404-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 15 2017 4 10 07 1901-1915 |
language |
English |
source |
Enthalten in International Journal of Control, Automation and Systems 15(2017), 4 vom: 10. Juli, Seite 1901-1915 volume:15 year:2017 number:4 day:10 month:07 pages:1901-1915 |
sourceStr |
Enthalten in International Journal of Control, Automation and Systems 15(2017), 4 vom: 10. Juli, Seite 1901-1915 volume:15 year:2017 number:4 day:10 month:07 pages:1901-1915 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Individual state variance constraint and passivity constraint sliding mode fuzzy control Takagi-Sugeno fuzzy model |
isfreeaccess_bool |
false |
container_title |
International Journal of Control, Automation and Systems |
authorswithroles_txt_mv |
Chang, Wen-Jer @@aut@@ Hsu, Feng-Ling @@aut@@ Ku, Cheung-Chieh @@aut@@ |
publishDateDaySort_date |
2017-07-10T00:00:00Z |
hierarchy_top_id |
SPR026303256 |
id |
SPR026434822 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026434822</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331230348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12555-016-9404-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026434822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12555-016-9404-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Wen-Jer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonlinear plant is transformed into a class of linear systems. Applying a Sliding Mode Fuzzy Control (SMFC) scheme, the designed controller causes the closed-loop system converging to the sliding surface and achieving the required control performance. For the control performance, the concepts of stability, individual state variance and passivity constraints are introduced for the sliding mode fuzzy control system. To apply convex optimal programming algorithm, some sufficient conditions derived in this paper are reduced to Linear Matrix Inequality (LMI) problem. At last, two simulation examples are proposed to demonstrate the applicability and usefulness of the proposed design method. One of the examples is to discuss the conservatism of this paper. Another is to show that the discrete truck-trailer system controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Individual state variance constraint and passivity constraint</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sliding mode fuzzy control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Takagi-Sugeno</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hsu, Feng-Ling</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ku, Cheung-Chieh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Control, Automation and Systems</subfield><subfield code="d">Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009</subfield><subfield code="g">15(2017), 4 vom: 10. Juli, Seite 1901-1915</subfield><subfield code="w">(DE-627)SPR026303256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">day:10</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1901-1915</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12555-016-9404-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2060</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="b">10</subfield><subfield code="c">07</subfield><subfield code="h">1901-1915</subfield></datafield></record></collection>
|
author |
Chang, Wen-Jer |
spellingShingle |
Chang, Wen-Jer misc Individual state variance constraint and passivity constraint misc sliding mode fuzzy control misc Takagi-Sugeno misc fuzzy model Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part |
authorStr |
Chang, Wen-Jer |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR026303256 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part Individual state variance constraint and passivity constraint (dpeaa)DE-He213 sliding mode fuzzy control (dpeaa)DE-He213 Takagi-Sugeno (dpeaa)DE-He213 fuzzy model (dpeaa)DE-He213 |
topic |
misc Individual state variance constraint and passivity constraint misc sliding mode fuzzy control misc Takagi-Sugeno misc fuzzy model |
topic_unstemmed |
misc Individual state variance constraint and passivity constraint misc sliding mode fuzzy control misc Takagi-Sugeno misc fuzzy model |
topic_browse |
misc Individual state variance constraint and passivity constraint misc sliding mode fuzzy control misc Takagi-Sugeno misc fuzzy model |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Control, Automation and Systems |
hierarchy_parent_id |
SPR026303256 |
hierarchy_top_title |
International Journal of Control, Automation and Systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR026303256 |
title |
Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part |
ctrlnum |
(DE-627)SPR026434822 (SPR)s12555-016-9404-3-e |
title_full |
Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part |
author_sort |
Chang, Wen-Jer |
journal |
International Journal of Control, Automation and Systems |
journalStr |
International Journal of Control, Automation and Systems |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
1901 |
author_browse |
Chang, Wen-Jer Hsu, Feng-Ling Ku, Cheung-Chieh |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Chang, Wen-Jer |
doi_str_mv |
10.1007/s12555-016-9404-3 |
title_sort |
complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via t-s fuzzy model with bilinear consequent part |
title_auth |
Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part |
abstract |
Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonlinear plant is transformed into a class of linear systems. Applying a Sliding Mode Fuzzy Control (SMFC) scheme, the designed controller causes the closed-loop system converging to the sliding surface and achieving the required control performance. For the control performance, the concepts of stability, individual state variance and passivity constraints are introduced for the sliding mode fuzzy control system. To apply convex optimal programming algorithm, some sufficient conditions derived in this paper are reduced to Linear Matrix Inequality (LMI) problem. At last, two simulation examples are proposed to demonstrate the applicability and usefulness of the proposed design method. One of the examples is to discuss the conservatism of this paper. Another is to show that the discrete truck-trailer system controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints. © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017 |
abstractGer |
Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonlinear plant is transformed into a class of linear systems. Applying a Sliding Mode Fuzzy Control (SMFC) scheme, the designed controller causes the closed-loop system converging to the sliding surface and achieving the required control performance. For the control performance, the concepts of stability, individual state variance and passivity constraints are introduced for the sliding mode fuzzy control system. To apply convex optimal programming algorithm, some sufficient conditions derived in this paper are reduced to Linear Matrix Inequality (LMI) problem. At last, two simulation examples are proposed to demonstrate the applicability and usefulness of the proposed design method. One of the examples is to discuss the conservatism of this paper. Another is to show that the discrete truck-trailer system controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints. © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017 |
abstract_unstemmed |
Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonlinear plant is transformed into a class of linear systems. Applying a Sliding Mode Fuzzy Control (SMFC) scheme, the designed controller causes the closed-loop system converging to the sliding surface and achieving the required control performance. For the control performance, the concepts of stability, individual state variance and passivity constraints are introduced for the sliding mode fuzzy control system. To apply convex optimal programming algorithm, some sufficient conditions derived in this paper are reduced to Linear Matrix Inequality (LMI) problem. At last, two simulation examples are proposed to demonstrate the applicability and usefulness of the proposed design method. One of the examples is to discuss the conservatism of this paper. Another is to show that the discrete truck-trailer system controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints. © Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 |
container_issue |
4 |
title_short |
Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part |
url |
https://dx.doi.org/10.1007/s12555-016-9404-3 |
remote_bool |
true |
author2 |
Hsu, Feng-Ling Ku, Cheung-Chieh |
author2Str |
Hsu, Feng-Ling Ku, Cheung-Chieh |
ppnlink |
SPR026303256 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12555-016-9404-3 |
up_date |
2024-07-03T20:46:36.481Z |
_version_ |
1803592239920709632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026434822</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331230348.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12555-016-9404-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026434822</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12555-016-9404-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Wen-Jer</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Complex performance control using sliding mode fuzzy approach for discrete-time nonlinear systems via T-S fuzzy model with bilinear consequent part</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag GmbH Germany 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a stabilization problem for the discrete nonlinear system with external disturbance, multiplicative noises and multiple constraints has been discussed in accordance with the definition of Lyapunov stability. Based on fuzzy modeling approach, the overall fuzzy model of a nonlinear plant is transformed into a class of linear systems. Applying a Sliding Mode Fuzzy Control (SMFC) scheme, the designed controller causes the closed-loop system converging to the sliding surface and achieving the required control performance. For the control performance, the concepts of stability, individual state variance and passivity constraints are introduced for the sliding mode fuzzy control system. To apply convex optimal programming algorithm, some sufficient conditions derived in this paper are reduced to Linear Matrix Inequality (LMI) problem. At last, two simulation examples are proposed to demonstrate the applicability and usefulness of the proposed design method. One of the examples is to discuss the conservatism of this paper. Another is to show that the discrete truck-trailer system controlled by sliding mode fuzzy controller can achieve stability constraints, individual state variance constraints and passivity constraints.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Individual state variance constraint and passivity constraint</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">sliding mode fuzzy control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Takagi-Sugeno</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hsu, Feng-Ling</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ku, Cheung-Chieh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Control, Automation and Systems</subfield><subfield code="d">Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009</subfield><subfield code="g">15(2017), 4 vom: 10. Juli, Seite 1901-1915</subfield><subfield code="w">(DE-627)SPR026303256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:4</subfield><subfield code="g">day:10</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1901-1915</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12555-016-9404-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2060</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2017</subfield><subfield code="e">4</subfield><subfield code="b">10</subfield><subfield code="c">07</subfield><subfield code="h">1901-1915</subfield></datafield></record></collection>
|
score |
7.4009514 |