Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults
Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear function...
Ausführliche Beschreibung
Autor*in: |
Xu, Peng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© ICROS, KIEE and Springer 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: International Journal of Control, Automation and Systems - Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009, 17(2019), 7 vom: Juli, Seite 1655-1665 |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2019 ; number:7 ; month:07 ; pages:1655-1665 |
Links: |
---|
DOI / URN: |
10.1007/s12555-018-0751-0 |
---|
Katalog-ID: |
SPR026442744 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026442744 | ||
003 | DE-627 | ||
005 | 20230331230501.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12555-018-0751-0 |2 doi | |
035 | |a (DE-627)SPR026442744 | ||
035 | |a (SPR)s12555-018-0751-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Xu, Peng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © ICROS, KIEE and Springer 2019 | ||
520 | |a Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear functions and a state observer is constructed to estimate the unmeasurable states. By combining dynamic surface control (DSC) technique with backstepping design, a novel finite-time fuzzy adaptive FTC strategy is proposed based on fault-tolerant control technique to overcomes the “explosion of complexity” problem. The presented control method demonstrates that all signals of the closed-loop system are semi-global practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of zero in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the presented control method. | ||
650 | 4 | |a Actuator faults |7 (dpeaa)DE-He213 | |
650 | 4 | |a fault-tolerant control |7 (dpeaa)DE-He213 | |
650 | 4 | |a finite-time stability |7 (dpeaa)DE-He213 | |
650 | 4 | |a fuzzy adaptive control |7 (dpeaa)DE-He213 | |
650 | 4 | |a observer-based output feedback |7 (dpeaa)DE-He213 | |
700 | 1 | |a Li, Yongming |0 (orcid)0000-0003-1789-8278 |4 aut | |
700 | 1 | |a Tong, Shaocheng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International Journal of Control, Automation and Systems |d Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 |g 17(2019), 7 vom: Juli, Seite 1655-1665 |w (DE-627)SPR026303256 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2019 |g number:7 |g month:07 |g pages:1655-1665 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12555-018-0751-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_21 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_72 | ||
912 | |a GBV_ILN_181 | ||
912 | |a GBV_ILN_496 | ||
912 | |a GBV_ILN_2002 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2060 | ||
912 | |a GBV_ILN_2470 | ||
951 | |a AR | ||
952 | |d 17 |j 2019 |e 7 |c 07 |h 1655-1665 |
author_variant |
p x px y l yl s t st |
---|---|
matchkey_str |
xupengliyongmingtongshaocheng:2019----:uzaatvfnttmfutoeatotofrutiptnmliuptolna |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1007/s12555-018-0751-0 doi (DE-627)SPR026442744 (SPR)s12555-018-0751-0-e DE-627 ger DE-627 rakwb eng Xu, Peng verfasserin aut Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ICROS, KIEE and Springer 2019 Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear functions and a state observer is constructed to estimate the unmeasurable states. By combining dynamic surface control (DSC) technique with backstepping design, a novel finite-time fuzzy adaptive FTC strategy is proposed based on fault-tolerant control technique to overcomes the “explosion of complexity” problem. The presented control method demonstrates that all signals of the closed-loop system are semi-global practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of zero in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the presented control method. Actuator faults (dpeaa)DE-He213 fault-tolerant control (dpeaa)DE-He213 finite-time stability (dpeaa)DE-He213 fuzzy adaptive control (dpeaa)DE-He213 observer-based output feedback (dpeaa)DE-He213 Li, Yongming (orcid)0000-0003-1789-8278 aut Tong, Shaocheng aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 17(2019), 7 vom: Juli, Seite 1655-1665 (DE-627)SPR026303256 nnns volume:17 year:2019 number:7 month:07 pages:1655-1665 https://dx.doi.org/10.1007/s12555-018-0751-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 17 2019 7 07 1655-1665 |
spelling |
10.1007/s12555-018-0751-0 doi (DE-627)SPR026442744 (SPR)s12555-018-0751-0-e DE-627 ger DE-627 rakwb eng Xu, Peng verfasserin aut Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ICROS, KIEE and Springer 2019 Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear functions and a state observer is constructed to estimate the unmeasurable states. By combining dynamic surface control (DSC) technique with backstepping design, a novel finite-time fuzzy adaptive FTC strategy is proposed based on fault-tolerant control technique to overcomes the “explosion of complexity” problem. The presented control method demonstrates that all signals of the closed-loop system are semi-global practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of zero in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the presented control method. Actuator faults (dpeaa)DE-He213 fault-tolerant control (dpeaa)DE-He213 finite-time stability (dpeaa)DE-He213 fuzzy adaptive control (dpeaa)DE-He213 observer-based output feedback (dpeaa)DE-He213 Li, Yongming (orcid)0000-0003-1789-8278 aut Tong, Shaocheng aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 17(2019), 7 vom: Juli, Seite 1655-1665 (DE-627)SPR026303256 nnns volume:17 year:2019 number:7 month:07 pages:1655-1665 https://dx.doi.org/10.1007/s12555-018-0751-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 17 2019 7 07 1655-1665 |
allfields_unstemmed |
10.1007/s12555-018-0751-0 doi (DE-627)SPR026442744 (SPR)s12555-018-0751-0-e DE-627 ger DE-627 rakwb eng Xu, Peng verfasserin aut Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ICROS, KIEE and Springer 2019 Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear functions and a state observer is constructed to estimate the unmeasurable states. By combining dynamic surface control (DSC) technique with backstepping design, a novel finite-time fuzzy adaptive FTC strategy is proposed based on fault-tolerant control technique to overcomes the “explosion of complexity” problem. The presented control method demonstrates that all signals of the closed-loop system are semi-global practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of zero in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the presented control method. Actuator faults (dpeaa)DE-He213 fault-tolerant control (dpeaa)DE-He213 finite-time stability (dpeaa)DE-He213 fuzzy adaptive control (dpeaa)DE-He213 observer-based output feedback (dpeaa)DE-He213 Li, Yongming (orcid)0000-0003-1789-8278 aut Tong, Shaocheng aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 17(2019), 7 vom: Juli, Seite 1655-1665 (DE-627)SPR026303256 nnns volume:17 year:2019 number:7 month:07 pages:1655-1665 https://dx.doi.org/10.1007/s12555-018-0751-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 17 2019 7 07 1655-1665 |
allfieldsGer |
10.1007/s12555-018-0751-0 doi (DE-627)SPR026442744 (SPR)s12555-018-0751-0-e DE-627 ger DE-627 rakwb eng Xu, Peng verfasserin aut Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ICROS, KIEE and Springer 2019 Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear functions and a state observer is constructed to estimate the unmeasurable states. By combining dynamic surface control (DSC) technique with backstepping design, a novel finite-time fuzzy adaptive FTC strategy is proposed based on fault-tolerant control technique to overcomes the “explosion of complexity” problem. The presented control method demonstrates that all signals of the closed-loop system are semi-global practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of zero in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the presented control method. Actuator faults (dpeaa)DE-He213 fault-tolerant control (dpeaa)DE-He213 finite-time stability (dpeaa)DE-He213 fuzzy adaptive control (dpeaa)DE-He213 observer-based output feedback (dpeaa)DE-He213 Li, Yongming (orcid)0000-0003-1789-8278 aut Tong, Shaocheng aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 17(2019), 7 vom: Juli, Seite 1655-1665 (DE-627)SPR026303256 nnns volume:17 year:2019 number:7 month:07 pages:1655-1665 https://dx.doi.org/10.1007/s12555-018-0751-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 17 2019 7 07 1655-1665 |
allfieldsSound |
10.1007/s12555-018-0751-0 doi (DE-627)SPR026442744 (SPR)s12555-018-0751-0-e DE-627 ger DE-627 rakwb eng Xu, Peng verfasserin aut Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © ICROS, KIEE and Springer 2019 Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear functions and a state observer is constructed to estimate the unmeasurable states. By combining dynamic surface control (DSC) technique with backstepping design, a novel finite-time fuzzy adaptive FTC strategy is proposed based on fault-tolerant control technique to overcomes the “explosion of complexity” problem. The presented control method demonstrates that all signals of the closed-loop system are semi-global practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of zero in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the presented control method. Actuator faults (dpeaa)DE-He213 fault-tolerant control (dpeaa)DE-He213 finite-time stability (dpeaa)DE-He213 fuzzy adaptive control (dpeaa)DE-He213 observer-based output feedback (dpeaa)DE-He213 Li, Yongming (orcid)0000-0003-1789-8278 aut Tong, Shaocheng aut Enthalten in International Journal of Control, Automation and Systems Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009 17(2019), 7 vom: Juli, Seite 1655-1665 (DE-627)SPR026303256 nnns volume:17 year:2019 number:7 month:07 pages:1655-1665 https://dx.doi.org/10.1007/s12555-018-0751-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 AR 17 2019 7 07 1655-1665 |
language |
English |
source |
Enthalten in International Journal of Control, Automation and Systems 17(2019), 7 vom: Juli, Seite 1655-1665 volume:17 year:2019 number:7 month:07 pages:1655-1665 |
sourceStr |
Enthalten in International Journal of Control, Automation and Systems 17(2019), 7 vom: Juli, Seite 1655-1665 volume:17 year:2019 number:7 month:07 pages:1655-1665 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Actuator faults fault-tolerant control finite-time stability fuzzy adaptive control observer-based output feedback |
isfreeaccess_bool |
false |
container_title |
International Journal of Control, Automation and Systems |
authorswithroles_txt_mv |
Xu, Peng @@aut@@ Li, Yongming @@aut@@ Tong, Shaocheng @@aut@@ |
publishDateDaySort_date |
2019-07-01T00:00:00Z |
hierarchy_top_id |
SPR026303256 |
id |
SPR026442744 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026442744</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331230501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12555-018-0751-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026442744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12555-018-0751-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ICROS, KIEE and Springer 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear functions and a state observer is constructed to estimate the unmeasurable states. By combining dynamic surface control (DSC) technique with backstepping design, a novel finite-time fuzzy adaptive FTC strategy is proposed based on fault-tolerant control technique to overcomes the “explosion of complexity” problem. The presented control method demonstrates that all signals of the closed-loop system are semi-global practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of zero in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the presented control method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actuator faults</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault-tolerant control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite-time stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy adaptive control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observer-based output feedback</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yongming</subfield><subfield code="0">(orcid)0000-0003-1789-8278</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Shaocheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Control, Automation and Systems</subfield><subfield code="d">Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009</subfield><subfield code="g">17(2019), 7 vom: Juli, Seite 1655-1665</subfield><subfield code="w">(DE-627)SPR026303256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1655-1665</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12555-018-0751-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2060</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2019</subfield><subfield code="e">7</subfield><subfield code="c">07</subfield><subfield code="h">1655-1665</subfield></datafield></record></collection>
|
author |
Xu, Peng |
spellingShingle |
Xu, Peng misc Actuator faults misc fault-tolerant control misc finite-time stability misc fuzzy adaptive control misc observer-based output feedback Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults |
authorStr |
Xu, Peng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)SPR026303256 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
topic_title |
Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults Actuator faults (dpeaa)DE-He213 fault-tolerant control (dpeaa)DE-He213 finite-time stability (dpeaa)DE-He213 fuzzy adaptive control (dpeaa)DE-He213 observer-based output feedback (dpeaa)DE-He213 |
topic |
misc Actuator faults misc fault-tolerant control misc finite-time stability misc fuzzy adaptive control misc observer-based output feedback |
topic_unstemmed |
misc Actuator faults misc fault-tolerant control misc finite-time stability misc fuzzy adaptive control misc observer-based output feedback |
topic_browse |
misc Actuator faults misc fault-tolerant control misc finite-time stability misc fuzzy adaptive control misc observer-based output feedback |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
International Journal of Control, Automation and Systems |
hierarchy_parent_id |
SPR026303256 |
hierarchy_top_title |
International Journal of Control, Automation and Systems |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)SPR026303256 |
title |
Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults |
ctrlnum |
(DE-627)SPR026442744 (SPR)s12555-018-0751-0-e |
title_full |
Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults |
author_sort |
Xu, Peng |
journal |
International Journal of Control, Automation and Systems |
journalStr |
International Journal of Control, Automation and Systems |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
container_start_page |
1655 |
author_browse |
Xu, Peng Li, Yongming Tong, Shaocheng |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Xu, Peng |
doi_str_mv |
10.1007/s12555-018-0751-0 |
normlink |
(ORCID)0000-0003-1789-8278 |
normlink_prefix_str_mv |
(orcid)0000-0003-1789-8278 |
title_sort |
fuzzy adaptive finite time fault-tolerant control for multi-input and multi-output nonlinear systems with actuator faults |
title_auth |
Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults |
abstract |
Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear functions and a state observer is constructed to estimate the unmeasurable states. By combining dynamic surface control (DSC) technique with backstepping design, a novel finite-time fuzzy adaptive FTC strategy is proposed based on fault-tolerant control technique to overcomes the “explosion of complexity” problem. The presented control method demonstrates that all signals of the closed-loop system are semi-global practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of zero in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the presented control method. © ICROS, KIEE and Springer 2019 |
abstractGer |
Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear functions and a state observer is constructed to estimate the unmeasurable states. By combining dynamic surface control (DSC) technique with backstepping design, a novel finite-time fuzzy adaptive FTC strategy is proposed based on fault-tolerant control technique to overcomes the “explosion of complexity” problem. The presented control method demonstrates that all signals of the closed-loop system are semi-global practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of zero in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the presented control method. © ICROS, KIEE and Springer 2019 |
abstract_unstemmed |
Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear functions and a state observer is constructed to estimate the unmeasurable states. By combining dynamic surface control (DSC) technique with backstepping design, a novel finite-time fuzzy adaptive FTC strategy is proposed based on fault-tolerant control technique to overcomes the “explosion of complexity” problem. The presented control method demonstrates that all signals of the closed-loop system are semi-global practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of zero in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the presented control method. © ICROS, KIEE and Springer 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_21 GBV_ILN_24 GBV_ILN_72 GBV_ILN_181 GBV_ILN_496 GBV_ILN_2002 GBV_ILN_2003 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2011 GBV_ILN_2060 GBV_ILN_2470 |
container_issue |
7 |
title_short |
Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults |
url |
https://dx.doi.org/10.1007/s12555-018-0751-0 |
remote_bool |
true |
author2 |
Li, Yongming Tong, Shaocheng |
author2Str |
Li, Yongming Tong, Shaocheng |
ppnlink |
SPR026303256 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12555-018-0751-0 |
up_date |
2024-07-03T20:48:42.411Z |
_version_ |
1803592371968933888 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026442744</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331230501.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12555-018-0751-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026442744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12555-018-0751-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xu, Peng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fuzzy Adaptive Finite Time Fault-tolerant Control for Multi-input and Multi-output Nonlinear Systems with Actuator Faults</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© ICROS, KIEE and Springer 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper investigates the problem of fuzzy adaptive finite-time fault tolerant control (FTC) for a class of multi-input and multi-output (MIMO) nonlinear systems with actuator failure. In control design, the fuzzy logic systems (FLSs) are adopted to identify the unknown nonlinear functions and a state observer is constructed to estimate the unmeasurable states. By combining dynamic surface control (DSC) technique with backstepping design, a novel finite-time fuzzy adaptive FTC strategy is proposed based on fault-tolerant control technique to overcomes the “explosion of complexity” problem. The presented control method demonstrates that all signals of the closed-loop system are semi-global practical finite-time stability (SGPFS), and the tracking errors converge to a small neighborhood of zero in a finite time. Finally, a numerical example is provided to illustrate the effectiveness of the presented control method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Actuator faults</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fault-tolerant control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">finite-time stability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">fuzzy adaptive control</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">observer-based output feedback</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Yongming</subfield><subfield code="0">(orcid)0000-0003-1789-8278</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tong, Shaocheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International Journal of Control, Automation and Systems</subfield><subfield code="d">Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers, 2009</subfield><subfield code="g">17(2019), 7 vom: Juli, Seite 1655-1665</subfield><subfield code="w">(DE-627)SPR026303256</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:7</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:1655-1665</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12555-018-0751-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_21</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_72</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_181</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_496</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2002</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2060</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2019</subfield><subfield code="e">7</subfield><subfield code="c">07</subfield><subfield code="h">1655-1665</subfield></datafield></record></collection>
|
score |
7.400482 |