Multi-View CNN Feature Aggregation with ELM Auto-Encoder for 3D Shape Recognition

Abstract Fast and accurate detection of 3D shapes is a fundamental task of robotic systems for intelligent tracking and automatic control. View-based 3D shape recognition has attracted increasing attention because human perceptions of 3D objects mainly rely on multiple 2D observations from different...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Yang, Zhi-Xin [verfasserIn]

Tang, Lulu

Zhang, Kun

Wong, Pak Kin

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2018

Schlagwörter:

ELM auto-encoder

Convolutional neural networks

3D shape recognition

Multi-view feature aggregation

Anmerkung:

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Übergeordnetes Werk:

Enthalten in: Cognitive Computation - New York, NY : Springer, 2009, 10(2018), 6 vom: 10. Okt., Seite 908-921

Übergeordnetes Werk:

volume:10 ; year:2018 ; number:6 ; day:10 ; month:10 ; pages:908-921

Links:

Volltext

DOI / URN:

10.1007/s12559-018-9598-1

Katalog-ID:

SPR026526166

Nicht das Richtige dabei?

Schreiben Sie uns!