Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields
Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been...
Ausführliche Beschreibung
Autor*in: |
Lapin, Norman A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Cancer nanotechnology - Wien [u.a.] : Springer, 2010, 7(2016), 1 vom: 30. Juni |
---|---|
Übergeordnetes Werk: |
volume:7 ; year:2016 ; number:1 ; day:30 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s12645-016-0016-7 |
---|
Katalog-ID: |
SPR026528568 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026528568 | ||
003 | DE-627 | ||
005 | 20230519161433.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12645-016-0016-7 |2 doi | |
035 | |a (DE-627)SPR026528568 | ||
035 | |a (SPR)s12645-016-0016-7-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Lapin, Norman A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2016 | ||
520 | |a Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure. | ||
650 | 4 | |a Intravital microscopy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a Radiofrequency fields |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hyperthermia |7 (dpeaa)DE-He213 | |
650 | 4 | |a Vasculature |7 (dpeaa)DE-He213 | |
650 | 4 | |a Quantum dots |7 (dpeaa)DE-He213 | |
700 | 1 | |a Krzykawska-Serda, Martyna |4 aut | |
700 | 1 | |a Ware, Matthew J. |4 aut | |
700 | 1 | |a Curley, Steven A. |4 aut | |
700 | 1 | |a Corr, Stuart J. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Cancer nanotechnology |d Wien [u.a.] : Springer, 2010 |g 7(2016), 1 vom: 30. Juni |w (DE-627)626052327 |w (DE-600)2553049-5 |x 1868-6966 |7 nnns |
773 | 1 | 8 | |g volume:7 |g year:2016 |g number:1 |g day:30 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12645-016-0016-7 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 7 |j 2016 |e 1 |b 30 |c 06 |
author_variant |
n a l na nal m k s mks m j w mj mjw s a c sa sac s j c sj sjc |
---|---|
matchkey_str |
article:18686966:2016----::nrvtlirsoyoeautntmrefsoonnprilsxoetnnnai |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1186/s12645-016-0016-7 doi (DE-627)SPR026528568 (SPR)s12645-016-0016-7-e DE-627 ger DE-627 rakwb eng Lapin, Norman A. verfasserin aut Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2016 Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure. Intravital microscopy (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 Radiofrequency fields (dpeaa)DE-He213 Hyperthermia (dpeaa)DE-He213 Vasculature (dpeaa)DE-He213 Quantum dots (dpeaa)DE-He213 Krzykawska-Serda, Martyna aut Ware, Matthew J. aut Curley, Steven A. aut Corr, Stuart J. aut Enthalten in Cancer nanotechnology Wien [u.a.] : Springer, 2010 7(2016), 1 vom: 30. Juni (DE-627)626052327 (DE-600)2553049-5 1868-6966 nnns volume:7 year:2016 number:1 day:30 month:06 https://dx.doi.org/10.1186/s12645-016-0016-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2016 1 30 06 |
spelling |
10.1186/s12645-016-0016-7 doi (DE-627)SPR026528568 (SPR)s12645-016-0016-7-e DE-627 ger DE-627 rakwb eng Lapin, Norman A. verfasserin aut Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2016 Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure. Intravital microscopy (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 Radiofrequency fields (dpeaa)DE-He213 Hyperthermia (dpeaa)DE-He213 Vasculature (dpeaa)DE-He213 Quantum dots (dpeaa)DE-He213 Krzykawska-Serda, Martyna aut Ware, Matthew J. aut Curley, Steven A. aut Corr, Stuart J. aut Enthalten in Cancer nanotechnology Wien [u.a.] : Springer, 2010 7(2016), 1 vom: 30. Juni (DE-627)626052327 (DE-600)2553049-5 1868-6966 nnns volume:7 year:2016 number:1 day:30 month:06 https://dx.doi.org/10.1186/s12645-016-0016-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2016 1 30 06 |
allfields_unstemmed |
10.1186/s12645-016-0016-7 doi (DE-627)SPR026528568 (SPR)s12645-016-0016-7-e DE-627 ger DE-627 rakwb eng Lapin, Norman A. verfasserin aut Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2016 Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure. Intravital microscopy (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 Radiofrequency fields (dpeaa)DE-He213 Hyperthermia (dpeaa)DE-He213 Vasculature (dpeaa)DE-He213 Quantum dots (dpeaa)DE-He213 Krzykawska-Serda, Martyna aut Ware, Matthew J. aut Curley, Steven A. aut Corr, Stuart J. aut Enthalten in Cancer nanotechnology Wien [u.a.] : Springer, 2010 7(2016), 1 vom: 30. Juni (DE-627)626052327 (DE-600)2553049-5 1868-6966 nnns volume:7 year:2016 number:1 day:30 month:06 https://dx.doi.org/10.1186/s12645-016-0016-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2016 1 30 06 |
allfieldsGer |
10.1186/s12645-016-0016-7 doi (DE-627)SPR026528568 (SPR)s12645-016-0016-7-e DE-627 ger DE-627 rakwb eng Lapin, Norman A. verfasserin aut Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2016 Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure. Intravital microscopy (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 Radiofrequency fields (dpeaa)DE-He213 Hyperthermia (dpeaa)DE-He213 Vasculature (dpeaa)DE-He213 Quantum dots (dpeaa)DE-He213 Krzykawska-Serda, Martyna aut Ware, Matthew J. aut Curley, Steven A. aut Corr, Stuart J. aut Enthalten in Cancer nanotechnology Wien [u.a.] : Springer, 2010 7(2016), 1 vom: 30. Juni (DE-627)626052327 (DE-600)2553049-5 1868-6966 nnns volume:7 year:2016 number:1 day:30 month:06 https://dx.doi.org/10.1186/s12645-016-0016-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2016 1 30 06 |
allfieldsSound |
10.1186/s12645-016-0016-7 doi (DE-627)SPR026528568 (SPR)s12645-016-0016-7-e DE-627 ger DE-627 rakwb eng Lapin, Norman A. verfasserin aut Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2016 Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure. Intravital microscopy (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 Radiofrequency fields (dpeaa)DE-He213 Hyperthermia (dpeaa)DE-He213 Vasculature (dpeaa)DE-He213 Quantum dots (dpeaa)DE-He213 Krzykawska-Serda, Martyna aut Ware, Matthew J. aut Curley, Steven A. aut Corr, Stuart J. aut Enthalten in Cancer nanotechnology Wien [u.a.] : Springer, 2010 7(2016), 1 vom: 30. Juni (DE-627)626052327 (DE-600)2553049-5 1868-6966 nnns volume:7 year:2016 number:1 day:30 month:06 https://dx.doi.org/10.1186/s12645-016-0016-7 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 7 2016 1 30 06 |
language |
English |
source |
Enthalten in Cancer nanotechnology 7(2016), 1 vom: 30. Juni volume:7 year:2016 number:1 day:30 month:06 |
sourceStr |
Enthalten in Cancer nanotechnology 7(2016), 1 vom: 30. Juni volume:7 year:2016 number:1 day:30 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Intravital microscopy Cancer Radiofrequency fields Hyperthermia Vasculature Quantum dots |
isfreeaccess_bool |
true |
container_title |
Cancer nanotechnology |
authorswithroles_txt_mv |
Lapin, Norman A. @@aut@@ Krzykawska-Serda, Martyna @@aut@@ Ware, Matthew J. @@aut@@ Curley, Steven A. @@aut@@ Corr, Stuart J. @@aut@@ |
publishDateDaySort_date |
2016-06-30T00:00:00Z |
hierarchy_top_id |
626052327 |
id |
SPR026528568 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026528568</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519161433.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12645-016-0016-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026528568</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12645-016-0016-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lapin, Norman A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intravital microscopy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiofrequency fields</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperthermia</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vasculature</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum dots</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krzykawska-Serda, Martyna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ware, Matthew J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Curley, Steven A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Corr, Stuart J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cancer nanotechnology</subfield><subfield code="d">Wien [u.a.] : Springer, 2010</subfield><subfield code="g">7(2016), 1 vom: 30. Juni</subfield><subfield code="w">(DE-627)626052327</subfield><subfield code="w">(DE-600)2553049-5</subfield><subfield code="x">1868-6966</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12645-016-0016-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Lapin, Norman A. |
spellingShingle |
Lapin, Norman A. misc Intravital microscopy misc Cancer misc Radiofrequency fields misc Hyperthermia misc Vasculature misc Quantum dots Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields |
authorStr |
Lapin, Norman A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)626052327 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1868-6966 |
topic_title |
Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields Intravital microscopy (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 Radiofrequency fields (dpeaa)DE-He213 Hyperthermia (dpeaa)DE-He213 Vasculature (dpeaa)DE-He213 Quantum dots (dpeaa)DE-He213 |
topic |
misc Intravital microscopy misc Cancer misc Radiofrequency fields misc Hyperthermia misc Vasculature misc Quantum dots |
topic_unstemmed |
misc Intravital microscopy misc Cancer misc Radiofrequency fields misc Hyperthermia misc Vasculature misc Quantum dots |
topic_browse |
misc Intravital microscopy misc Cancer misc Radiofrequency fields misc Hyperthermia misc Vasculature misc Quantum dots |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Cancer nanotechnology |
hierarchy_parent_id |
626052327 |
hierarchy_top_title |
Cancer nanotechnology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)626052327 (DE-600)2553049-5 |
title |
Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields |
ctrlnum |
(DE-627)SPR026528568 (SPR)s12645-016-0016-7-e |
title_full |
Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields |
author_sort |
Lapin, Norman A. |
journal |
Cancer nanotechnology |
journalStr |
Cancer nanotechnology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Lapin, Norman A. Krzykawska-Serda, Martyna Ware, Matthew J. Curley, Steven A. Corr, Stuart J. |
container_volume |
7 |
format_se |
Elektronische Aufsätze |
author-letter |
Lapin, Norman A. |
doi_str_mv |
10.1186/s12645-016-0016-7 |
title_sort |
intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields |
title_auth |
Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields |
abstract |
Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure. © The Author(s) 2016 |
abstractGer |
Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure. © The Author(s) 2016 |
abstract_unstemmed |
Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure. © The Author(s) 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields |
url |
https://dx.doi.org/10.1186/s12645-016-0016-7 |
remote_bool |
true |
author2 |
Krzykawska-Serda, Martyna Ware, Matthew J. Curley, Steven A. Corr, Stuart J. |
author2Str |
Krzykawska-Serda, Martyna Ware, Matthew J. Curley, Steven A. Corr, Stuart J. |
ppnlink |
626052327 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12645-016-0016-7 |
up_date |
2024-07-03T21:20:11.876Z |
_version_ |
1803594353215537152 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026528568</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519161433.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12645-016-0016-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026528568</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12645-016-0016-7-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lapin, Norman A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Intravital microscopy for evaluating tumor perfusion of nanoparticles exposed to non-invasive radiofrequency electric fields</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Poor biodistribution and accumulation of chemotherapeutics in tumors due to limitations on diffusive transport and high intra-tumoral pressures (Jain RK, Nat Med. 7(9):987–989, 2001) have prompted the investigation of adjunctive therapies to improve treatment outcomes. Hyperthermia has been widely applied in attempts to meet this need, but it is limited in its ability to reach tumors in deeply located body regions. High-intensity radiofrequency (RF) electric fields have the potential to overcome such barriers enhancing delivery and extravasation of chemotherapeutics. However, due to factors, including tumor heterogeneity and lack of kinetic information, there is insufficient understanding of time-resolved interaction between RF fields and tumor vasculature, drug molecules and nanoparticle (NP) vectors. Intravital microscopy (IVM) provides time-resolved high-definition images of specific tumor microenvironments, overcoming heterogeneity issues, and can be integrated with a portable RF device to enable detailed observation over time of the effects of the RF field on kinetics and biodistribution at the microvascular level. Herein, we provide a protocol describing the safe integration of IVM with a high-powered non-invasive RF field applied to 4T1 orthotopic breast tumors in live mice. Results show increased perfusion of NPs in microvasculature upon RF hyperthermia treatment and increased perfusion, release and spreading of injected reagents preferentially in irregular vessels during RF exposure.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intravital microscopy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Radiofrequency fields</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hyperthermia</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vasculature</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum dots</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krzykawska-Serda, Martyna</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ware, Matthew J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Curley, Steven A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Corr, Stuart J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Cancer nanotechnology</subfield><subfield code="d">Wien [u.a.] : Springer, 2010</subfield><subfield code="g">7(2016), 1 vom: 30. Juni</subfield><subfield code="w">(DE-627)626052327</subfield><subfield code="w">(DE-600)2553049-5</subfield><subfield code="x">1868-6966</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:7</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:30</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12645-016-0016-7</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">7</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">30</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.401575 |