Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles
Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water...
Ausführliche Beschreibung
Autor*in: |
Al-Habsi, Nasser Abdullah [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Japanese Society of Fisheries Science 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Fisheries science - Tokyo : Springer Japan, 1994, 83(2017), 5 vom: 26. Juli, Seite 845-851 |
---|---|
Übergeordnetes Werk: |
volume:83 ; year:2017 ; number:5 ; day:26 ; month:07 ; pages:845-851 |
Links: |
---|
DOI / URN: |
10.1007/s12562-017-1114-0 |
---|
Katalog-ID: |
SPR02676105X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR02676105X | ||
003 | DE-627 | ||
005 | 20230331231045.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1007/s12562-017-1114-0 |2 doi | |
035 | |a (DE-627)SPR02676105X | ||
035 | |a (SPR)s12562-017-1114-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Al-Habsi, Nasser Abdullah |e verfasserin |4 aut | |
245 | 1 | 0 | |a Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Japanese Society of Fisheries Science 2017 | ||
520 | |a Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T2b (low-mobile), T21 (medium-mobile) and T22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T21: sardine r = −0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T2b and T22 relaxation of LF-NMR. | ||
650 | 4 | |a Freezing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Freeze–thaw cycle |7 (dpeaa)DE-He213 | |
650 | 4 | |a NMR relaxation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mackerel |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fish quality |7 (dpeaa)DE-He213 | |
700 | 1 | |a Al-Hadhrami, Sara |4 aut | |
700 | 1 | |a Al-Kasbi, Habiba |4 aut | |
700 | 1 | |a Rahman, Mohammad Shafiur |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Fisheries science |d Tokyo : Springer Japan, 1994 |g 83(2017), 5 vom: 26. Juli, Seite 845-851 |w (DE-627)32060215X |w (DE-600)2020302-0 |x 1444-2906 |7 nnns |
773 | 1 | 8 | |g volume:83 |g year:2017 |g number:5 |g day:26 |g month:07 |g pages:845-851 |
856 | 4 | 0 | |u https://dx.doi.org/10.1007/s12562-017-1114-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_32 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_90 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_100 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_120 | ||
912 | |a GBV_ILN_138 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_152 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_171 | ||
912 | |a GBV_ILN_187 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_250 | ||
912 | |a GBV_ILN_281 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_636 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2007 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2026 | ||
912 | |a GBV_ILN_2027 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2034 | ||
912 | |a GBV_ILN_2037 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2039 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2049 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2059 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2064 | ||
912 | |a GBV_ILN_2065 | ||
912 | |a GBV_ILN_2068 | ||
912 | |a GBV_ILN_2070 | ||
912 | |a GBV_ILN_2086 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2093 | ||
912 | |a GBV_ILN_2106 | ||
912 | |a GBV_ILN_2107 | ||
912 | |a GBV_ILN_2108 | ||
912 | |a GBV_ILN_2110 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2112 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2116 | ||
912 | |a GBV_ILN_2118 | ||
912 | |a GBV_ILN_2119 | ||
912 | |a GBV_ILN_2122 | ||
912 | |a GBV_ILN_2129 | ||
912 | |a GBV_ILN_2143 | ||
912 | |a GBV_ILN_2144 | ||
912 | |a GBV_ILN_2147 | ||
912 | |a GBV_ILN_2148 | ||
912 | |a GBV_ILN_2152 | ||
912 | |a GBV_ILN_2153 | ||
912 | |a GBV_ILN_2188 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_2232 | ||
912 | |a GBV_ILN_2336 | ||
912 | |a GBV_ILN_2446 | ||
912 | |a GBV_ILN_2470 | ||
912 | |a GBV_ILN_2472 | ||
912 | |a GBV_ILN_2507 | ||
912 | |a GBV_ILN_2522 | ||
912 | |a GBV_ILN_2548 | ||
912 | |a GBV_ILN_4035 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4046 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4242 | ||
912 | |a GBV_ILN_4246 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4251 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4333 | ||
912 | |a GBV_ILN_4334 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4336 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4393 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 83 |j 2017 |e 5 |b 26 |c 07 |h 845-851 |
author_variant |
n a a h naa naah s a h sah h a k hak m s r ms msr |
---|---|
matchkey_str |
article:14442906:2017----::oeuambltofsfehesrdyofedulamgeirsnnefmrlx |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1007/s12562-017-1114-0 doi (DE-627)SPR02676105X (SPR)s12562-017-1114-0-e DE-627 ger DE-627 rakwb eng Al-Habsi, Nasser Abdullah verfasserin aut Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Japanese Society of Fisheries Science 2017 Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T2b (low-mobile), T21 (medium-mobile) and T22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T21: sardine r = −0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T2b and T22 relaxation of LF-NMR. Freezing (dpeaa)DE-He213 Freeze–thaw cycle (dpeaa)DE-He213 NMR relaxation (dpeaa)DE-He213 Mackerel (dpeaa)DE-He213 Fish quality (dpeaa)DE-He213 Al-Hadhrami, Sara aut Al-Kasbi, Habiba aut Rahman, Mohammad Shafiur aut Enthalten in Fisheries science Tokyo : Springer Japan, 1994 83(2017), 5 vom: 26. Juli, Seite 845-851 (DE-627)32060215X (DE-600)2020302-0 1444-2906 nnns volume:83 year:2017 number:5 day:26 month:07 pages:845-851 https://dx.doi.org/10.1007/s12562-017-1114-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 83 2017 5 26 07 845-851 |
spelling |
10.1007/s12562-017-1114-0 doi (DE-627)SPR02676105X (SPR)s12562-017-1114-0-e DE-627 ger DE-627 rakwb eng Al-Habsi, Nasser Abdullah verfasserin aut Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Japanese Society of Fisheries Science 2017 Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T2b (low-mobile), T21 (medium-mobile) and T22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T21: sardine r = −0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T2b and T22 relaxation of LF-NMR. Freezing (dpeaa)DE-He213 Freeze–thaw cycle (dpeaa)DE-He213 NMR relaxation (dpeaa)DE-He213 Mackerel (dpeaa)DE-He213 Fish quality (dpeaa)DE-He213 Al-Hadhrami, Sara aut Al-Kasbi, Habiba aut Rahman, Mohammad Shafiur aut Enthalten in Fisheries science Tokyo : Springer Japan, 1994 83(2017), 5 vom: 26. Juli, Seite 845-851 (DE-627)32060215X (DE-600)2020302-0 1444-2906 nnns volume:83 year:2017 number:5 day:26 month:07 pages:845-851 https://dx.doi.org/10.1007/s12562-017-1114-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 83 2017 5 26 07 845-851 |
allfields_unstemmed |
10.1007/s12562-017-1114-0 doi (DE-627)SPR02676105X (SPR)s12562-017-1114-0-e DE-627 ger DE-627 rakwb eng Al-Habsi, Nasser Abdullah verfasserin aut Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Japanese Society of Fisheries Science 2017 Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T2b (low-mobile), T21 (medium-mobile) and T22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T21: sardine r = −0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T2b and T22 relaxation of LF-NMR. Freezing (dpeaa)DE-He213 Freeze–thaw cycle (dpeaa)DE-He213 NMR relaxation (dpeaa)DE-He213 Mackerel (dpeaa)DE-He213 Fish quality (dpeaa)DE-He213 Al-Hadhrami, Sara aut Al-Kasbi, Habiba aut Rahman, Mohammad Shafiur aut Enthalten in Fisheries science Tokyo : Springer Japan, 1994 83(2017), 5 vom: 26. Juli, Seite 845-851 (DE-627)32060215X (DE-600)2020302-0 1444-2906 nnns volume:83 year:2017 number:5 day:26 month:07 pages:845-851 https://dx.doi.org/10.1007/s12562-017-1114-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 83 2017 5 26 07 845-851 |
allfieldsGer |
10.1007/s12562-017-1114-0 doi (DE-627)SPR02676105X (SPR)s12562-017-1114-0-e DE-627 ger DE-627 rakwb eng Al-Habsi, Nasser Abdullah verfasserin aut Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Japanese Society of Fisheries Science 2017 Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T2b (low-mobile), T21 (medium-mobile) and T22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T21: sardine r = −0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T2b and T22 relaxation of LF-NMR. Freezing (dpeaa)DE-He213 Freeze–thaw cycle (dpeaa)DE-He213 NMR relaxation (dpeaa)DE-He213 Mackerel (dpeaa)DE-He213 Fish quality (dpeaa)DE-He213 Al-Hadhrami, Sara aut Al-Kasbi, Habiba aut Rahman, Mohammad Shafiur aut Enthalten in Fisheries science Tokyo : Springer Japan, 1994 83(2017), 5 vom: 26. Juli, Seite 845-851 (DE-627)32060215X (DE-600)2020302-0 1444-2906 nnns volume:83 year:2017 number:5 day:26 month:07 pages:845-851 https://dx.doi.org/10.1007/s12562-017-1114-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 83 2017 5 26 07 845-851 |
allfieldsSound |
10.1007/s12562-017-1114-0 doi (DE-627)SPR02676105X (SPR)s12562-017-1114-0-e DE-627 ger DE-627 rakwb eng Al-Habsi, Nasser Abdullah verfasserin aut Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Japanese Society of Fisheries Science 2017 Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T2b (low-mobile), T21 (medium-mobile) and T22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T21: sardine r = −0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T2b and T22 relaxation of LF-NMR. Freezing (dpeaa)DE-He213 Freeze–thaw cycle (dpeaa)DE-He213 NMR relaxation (dpeaa)DE-He213 Mackerel (dpeaa)DE-He213 Fish quality (dpeaa)DE-He213 Al-Hadhrami, Sara aut Al-Kasbi, Habiba aut Rahman, Mohammad Shafiur aut Enthalten in Fisheries science Tokyo : Springer Japan, 1994 83(2017), 5 vom: 26. Juli, Seite 845-851 (DE-627)32060215X (DE-600)2020302-0 1444-2906 nnns volume:83 year:2017 number:5 day:26 month:07 pages:845-851 https://dx.doi.org/10.1007/s12562-017-1114-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 AR 83 2017 5 26 07 845-851 |
language |
English |
source |
Enthalten in Fisheries science 83(2017), 5 vom: 26. Juli, Seite 845-851 volume:83 year:2017 number:5 day:26 month:07 pages:845-851 |
sourceStr |
Enthalten in Fisheries science 83(2017), 5 vom: 26. Juli, Seite 845-851 volume:83 year:2017 number:5 day:26 month:07 pages:845-851 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Freezing Freeze–thaw cycle NMR relaxation Mackerel Fish quality |
isfreeaccess_bool |
false |
container_title |
Fisheries science |
authorswithroles_txt_mv |
Al-Habsi, Nasser Abdullah @@aut@@ Al-Hadhrami, Sara @@aut@@ Al-Kasbi, Habiba @@aut@@ Rahman, Mohammad Shafiur @@aut@@ |
publishDateDaySort_date |
2017-07-26T00:00:00Z |
hierarchy_top_id |
32060215X |
id |
SPR02676105X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02676105X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331231045.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12562-017-1114-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02676105X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12562-017-1114-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Al-Habsi, Nasser Abdullah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Japanese Society of Fisheries Science 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T2b (low-mobile), T21 (medium-mobile) and T22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T21: sardine r = −0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T2b and T22 relaxation of LF-NMR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Freezing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Freeze–thaw cycle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NMR relaxation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mackerel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fish quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Al-Hadhrami, Sara</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Al-Kasbi, Habiba</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rahman, Mohammad Shafiur</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fisheries science</subfield><subfield code="d">Tokyo : Springer Japan, 1994</subfield><subfield code="g">83(2017), 5 vom: 26. Juli, Seite 845-851</subfield><subfield code="w">(DE-627)32060215X</subfield><subfield code="w">(DE-600)2020302-0</subfield><subfield code="x">1444-2906</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:83</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">day:26</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:845-851</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12562-017-1114-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">83</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="b">26</subfield><subfield code="c">07</subfield><subfield code="h">845-851</subfield></datafield></record></collection>
|
author |
Al-Habsi, Nasser Abdullah |
spellingShingle |
Al-Habsi, Nasser Abdullah misc Freezing misc Freeze–thaw cycle misc NMR relaxation misc Mackerel misc Fish quality Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles |
authorStr |
Al-Habsi, Nasser Abdullah |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32060215X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1444-2906 |
topic_title |
Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles Freezing (dpeaa)DE-He213 Freeze–thaw cycle (dpeaa)DE-He213 NMR relaxation (dpeaa)DE-He213 Mackerel (dpeaa)DE-He213 Fish quality (dpeaa)DE-He213 |
topic |
misc Freezing misc Freeze–thaw cycle misc NMR relaxation misc Mackerel misc Fish quality |
topic_unstemmed |
misc Freezing misc Freeze–thaw cycle misc NMR relaxation misc Mackerel misc Fish quality |
topic_browse |
misc Freezing misc Freeze–thaw cycle misc NMR relaxation misc Mackerel misc Fish quality |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Fisheries science |
hierarchy_parent_id |
32060215X |
hierarchy_top_title |
Fisheries science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32060215X (DE-600)2020302-0 |
title |
Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles |
ctrlnum |
(DE-627)SPR02676105X (SPR)s12562-017-1114-0-e |
title_full |
Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles |
author_sort |
Al-Habsi, Nasser Abdullah |
journal |
Fisheries science |
journalStr |
Fisheries science |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
container_start_page |
845 |
author_browse |
Al-Habsi, Nasser Abdullah Al-Hadhrami, Sara Al-Kasbi, Habiba Rahman, Mohammad Shafiur |
container_volume |
83 |
format_se |
Elektronische Aufsätze |
author-letter |
Al-Habsi, Nasser Abdullah |
doi_str_mv |
10.1007/s12562-017-1114-0 |
title_sort |
molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (lf-nmr) relaxation: effects of freeze–thaw cycles |
title_auth |
Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles |
abstract |
Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T2b (low-mobile), T21 (medium-mobile) and T22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T21: sardine r = −0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T2b and T22 relaxation of LF-NMR. © Japanese Society of Fisheries Science 2017 |
abstractGer |
Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T2b (low-mobile), T21 (medium-mobile) and T22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T21: sardine r = −0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T2b and T22 relaxation of LF-NMR. © Japanese Society of Fisheries Science 2017 |
abstract_unstemmed |
Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T2b (low-mobile), T21 (medium-mobile) and T22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T21: sardine r = −0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T2b and T22 relaxation of LF-NMR. © Japanese Society of Fisheries Science 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_32 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_90 GBV_ILN_95 GBV_ILN_100 GBV_ILN_105 GBV_ILN_110 GBV_ILN_120 GBV_ILN_138 GBV_ILN_150 GBV_ILN_151 GBV_ILN_152 GBV_ILN_161 GBV_ILN_170 GBV_ILN_171 GBV_ILN_187 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_250 GBV_ILN_281 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_636 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2004 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2007 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2026 GBV_ILN_2027 GBV_ILN_2031 GBV_ILN_2034 GBV_ILN_2037 GBV_ILN_2038 GBV_ILN_2039 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2049 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2059 GBV_ILN_2061 GBV_ILN_2064 GBV_ILN_2065 GBV_ILN_2068 GBV_ILN_2070 GBV_ILN_2086 GBV_ILN_2088 GBV_ILN_2093 GBV_ILN_2106 GBV_ILN_2107 GBV_ILN_2108 GBV_ILN_2110 GBV_ILN_2111 GBV_ILN_2112 GBV_ILN_2113 GBV_ILN_2116 GBV_ILN_2118 GBV_ILN_2119 GBV_ILN_2122 GBV_ILN_2129 GBV_ILN_2143 GBV_ILN_2144 GBV_ILN_2147 GBV_ILN_2148 GBV_ILN_2152 GBV_ILN_2153 GBV_ILN_2188 GBV_ILN_2190 GBV_ILN_2232 GBV_ILN_2336 GBV_ILN_2446 GBV_ILN_2470 GBV_ILN_2472 GBV_ILN_2507 GBV_ILN_2522 GBV_ILN_2548 GBV_ILN_4035 GBV_ILN_4037 GBV_ILN_4046 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4242 GBV_ILN_4246 GBV_ILN_4249 GBV_ILN_4251 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4333 GBV_ILN_4334 GBV_ILN_4335 GBV_ILN_4336 GBV_ILN_4338 GBV_ILN_4393 GBV_ILN_4700 |
container_issue |
5 |
title_short |
Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles |
url |
https://dx.doi.org/10.1007/s12562-017-1114-0 |
remote_bool |
true |
author2 |
Al-Hadhrami, Sara Al-Kasbi, Habiba Rahman, Mohammad Shafiur |
author2Str |
Al-Hadhrami, Sara Al-Kasbi, Habiba Rahman, Mohammad Shafiur |
ppnlink |
32060215X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12562-017-1114-0 |
up_date |
2024-07-03T22:38:05.836Z |
_version_ |
1803599254219915264 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02676105X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230331231045.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12562-017-1114-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02676105X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12562-017-1114-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Al-Habsi, Nasser Abdullah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Molecular mobility of fish flesh measured by low-field nuclear magnetic resonance (LF-NMR) relaxation: effects of freeze–thaw cycles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Japanese Society of Fisheries Science 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this study, the molecular mobility of fish flesh was measured by low field nuclear magnetic resonance (LF-NMR) relaxation. Sardine, tuna and mackerel were frozen at −40 °C and stored for 1 day (24 h); and then these samples were thawed at room temperature (20 °C). The relaxation of water protons in fish flesh was measured for fresh (i.e., before freezing) and multi-cycle freeze–thaw samples (i.e., up to 12 times). Three domains from different pools of protons (i.e., low-mobile, medium-mobile and high-mobile) were identified from the relaxation curve. The T2b (low-mobile), T21 (medium-mobile) and T22 (high-mobile) indicated the proton populations in the protein molecules, strongly bound water molecules, and weakly bound water molecules, respectively. In all cases, the relaxation time (T2b: sardine r = 0.736 and p < 0.01, tuna r = 0.857 and p < 0.001, mackerel r = 0.904 and p < 0.001; and T22: sardine r = 0.956 and p < 0.0001, tuna r = 0.927 and p < 0.0001, mackerel r = 0.890 and p < 0.0001) increased with the freeze–thaw cycles and it reached a nearly constant value after 6 freeze–thaw cycles. The increased relaxation time (i.e., higher mobility) up to 6 freeze–thaw cycles could be due to the increase in proton mobility. However, relaxation time (T21: sardine r = −0.510 and p > 0.05, tuna r = 0.162 and p > 0.5, mackerel r = 0.513 and p > 0.01) showed insignificant change with the increase of freeze–thaw cycles, which indicated minimal change in the medium-mobile protons. The results in this study revealed that the changes in proton mobility in the fish flesh during freeze–thaw cycles could be identified using T2b and T22 relaxation of LF-NMR.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Freezing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Freeze–thaw cycle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NMR relaxation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mackerel</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fish quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Al-Hadhrami, Sara</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Al-Kasbi, Habiba</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rahman, Mohammad Shafiur</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Fisheries science</subfield><subfield code="d">Tokyo : Springer Japan, 1994</subfield><subfield code="g">83(2017), 5 vom: 26. Juli, Seite 845-851</subfield><subfield code="w">(DE-627)32060215X</subfield><subfield code="w">(DE-600)2020302-0</subfield><subfield code="x">1444-2906</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:83</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:5</subfield><subfield code="g">day:26</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:845-851</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1007/s12562-017-1114-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_32</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_90</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_100</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_120</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_138</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_187</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_250</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_636</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2007</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2026</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2034</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2039</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2049</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2059</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2064</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2065</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2068</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2070</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2086</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2093</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2106</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2107</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2116</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2118</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2119</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2122</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2129</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2143</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2144</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2147</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2148</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2152</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2153</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2188</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2232</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2446</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2470</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2472</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2507</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2522</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2548</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4035</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4046</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4242</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4246</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4251</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4333</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4334</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4336</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4393</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">83</subfield><subfield code="j">2017</subfield><subfield code="e">5</subfield><subfield code="b">26</subfield><subfield code="c">07</subfield><subfield code="h">845-851</subfield></datafield></record></collection>
|
score |
7.402231 |