A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses
Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unb...
Ausführliche Beschreibung
Autor*in: |
Fernando, Rohan L [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
Well Linear Unbiased Prediction |
---|
Anmerkung: |
© Fernando et al.; licensee BioMed Central Ltd. 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: Genetics, selection, evolution - London : BioMed Central, 1989, 46(2014), 1 vom: 22. Sept. |
---|---|
Übergeordnetes Werk: |
volume:46 ; year:2014 ; number:1 ; day:22 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/1297-9686-46-50 |
---|
Katalog-ID: |
SPR026807882 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026807882 | ||
003 | DE-627 | ||
005 | 20230519182714.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1297-9686-46-50 |2 doi | |
035 | |a (DE-627)SPR026807882 | ||
035 | |a (SPR)1297-9686-46-50-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Fernando, Rohan L |e verfasserin |4 aut | |
245 | 1 | 2 | |a A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Fernando et al.; licensee BioMed Central Ltd. 2014 | ||
520 | |a Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications. | ||
650 | 4 | |a Message Passing Interface |7 (dpeaa)DE-He213 | |
650 | 4 | |a Estimate Breeding Value |7 (dpeaa)DE-He213 | |
650 | 4 | |a Well Linear Unbiased Prediction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Genomic Estimate Breeding Value |7 (dpeaa)DE-He213 | |
650 | 4 | |a Impute Genotype |7 (dpeaa)DE-He213 | |
700 | 1 | |a Dekkers, Jack CM |4 aut | |
700 | 1 | |a Garrick, Dorian J |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Genetics, selection, evolution |d London : BioMed Central, 1989 |g 46(2014), 1 vom: 22. Sept. |w (DE-627)312849052 |w (DE-600)2012369-3 |x 1297-9686 |7 nnns |
773 | 1 | 8 | |g volume:46 |g year:2014 |g number:1 |g day:22 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1297-9686-46-50 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 46 |j 2014 |e 1 |b 22 |c 09 |
author_variant |
r l f rl rlf j c d jc jcd d j g dj djg |
---|---|
matchkey_str |
article:12979686:2014----::casfaeinehdtcmieagnmesfeoyeadogntpdn |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1186/1297-9686-46-50 doi (DE-627)SPR026807882 (SPR)1297-9686-46-50-e DE-627 ger DE-627 rakwb eng Fernando, Rohan L verfasserin aut A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Fernando et al.; licensee BioMed Central Ltd. 2014 Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications. Message Passing Interface (dpeaa)DE-He213 Estimate Breeding Value (dpeaa)DE-He213 Well Linear Unbiased Prediction (dpeaa)DE-He213 Genomic Estimate Breeding Value (dpeaa)DE-He213 Impute Genotype (dpeaa)DE-He213 Dekkers, Jack CM aut Garrick, Dorian J aut Enthalten in Genetics, selection, evolution London : BioMed Central, 1989 46(2014), 1 vom: 22. Sept. (DE-627)312849052 (DE-600)2012369-3 1297-9686 nnns volume:46 year:2014 number:1 day:22 month:09 https://dx.doi.org/10.1186/1297-9686-46-50 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 46 2014 1 22 09 |
spelling |
10.1186/1297-9686-46-50 doi (DE-627)SPR026807882 (SPR)1297-9686-46-50-e DE-627 ger DE-627 rakwb eng Fernando, Rohan L verfasserin aut A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Fernando et al.; licensee BioMed Central Ltd. 2014 Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications. Message Passing Interface (dpeaa)DE-He213 Estimate Breeding Value (dpeaa)DE-He213 Well Linear Unbiased Prediction (dpeaa)DE-He213 Genomic Estimate Breeding Value (dpeaa)DE-He213 Impute Genotype (dpeaa)DE-He213 Dekkers, Jack CM aut Garrick, Dorian J aut Enthalten in Genetics, selection, evolution London : BioMed Central, 1989 46(2014), 1 vom: 22. Sept. (DE-627)312849052 (DE-600)2012369-3 1297-9686 nnns volume:46 year:2014 number:1 day:22 month:09 https://dx.doi.org/10.1186/1297-9686-46-50 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 46 2014 1 22 09 |
allfields_unstemmed |
10.1186/1297-9686-46-50 doi (DE-627)SPR026807882 (SPR)1297-9686-46-50-e DE-627 ger DE-627 rakwb eng Fernando, Rohan L verfasserin aut A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Fernando et al.; licensee BioMed Central Ltd. 2014 Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications. Message Passing Interface (dpeaa)DE-He213 Estimate Breeding Value (dpeaa)DE-He213 Well Linear Unbiased Prediction (dpeaa)DE-He213 Genomic Estimate Breeding Value (dpeaa)DE-He213 Impute Genotype (dpeaa)DE-He213 Dekkers, Jack CM aut Garrick, Dorian J aut Enthalten in Genetics, selection, evolution London : BioMed Central, 1989 46(2014), 1 vom: 22. Sept. (DE-627)312849052 (DE-600)2012369-3 1297-9686 nnns volume:46 year:2014 number:1 day:22 month:09 https://dx.doi.org/10.1186/1297-9686-46-50 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 46 2014 1 22 09 |
allfieldsGer |
10.1186/1297-9686-46-50 doi (DE-627)SPR026807882 (SPR)1297-9686-46-50-e DE-627 ger DE-627 rakwb eng Fernando, Rohan L verfasserin aut A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Fernando et al.; licensee BioMed Central Ltd. 2014 Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications. Message Passing Interface (dpeaa)DE-He213 Estimate Breeding Value (dpeaa)DE-He213 Well Linear Unbiased Prediction (dpeaa)DE-He213 Genomic Estimate Breeding Value (dpeaa)DE-He213 Impute Genotype (dpeaa)DE-He213 Dekkers, Jack CM aut Garrick, Dorian J aut Enthalten in Genetics, selection, evolution London : BioMed Central, 1989 46(2014), 1 vom: 22. Sept. (DE-627)312849052 (DE-600)2012369-3 1297-9686 nnns volume:46 year:2014 number:1 day:22 month:09 https://dx.doi.org/10.1186/1297-9686-46-50 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 46 2014 1 22 09 |
allfieldsSound |
10.1186/1297-9686-46-50 doi (DE-627)SPR026807882 (SPR)1297-9686-46-50-e DE-627 ger DE-627 rakwb eng Fernando, Rohan L verfasserin aut A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Fernando et al.; licensee BioMed Central Ltd. 2014 Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications. Message Passing Interface (dpeaa)DE-He213 Estimate Breeding Value (dpeaa)DE-He213 Well Linear Unbiased Prediction (dpeaa)DE-He213 Genomic Estimate Breeding Value (dpeaa)DE-He213 Impute Genotype (dpeaa)DE-He213 Dekkers, Jack CM aut Garrick, Dorian J aut Enthalten in Genetics, selection, evolution London : BioMed Central, 1989 46(2014), 1 vom: 22. Sept. (DE-627)312849052 (DE-600)2012369-3 1297-9686 nnns volume:46 year:2014 number:1 day:22 month:09 https://dx.doi.org/10.1186/1297-9686-46-50 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 46 2014 1 22 09 |
language |
English |
source |
Enthalten in Genetics, selection, evolution 46(2014), 1 vom: 22. Sept. volume:46 year:2014 number:1 day:22 month:09 |
sourceStr |
Enthalten in Genetics, selection, evolution 46(2014), 1 vom: 22. Sept. volume:46 year:2014 number:1 day:22 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Message Passing Interface Estimate Breeding Value Well Linear Unbiased Prediction Genomic Estimate Breeding Value Impute Genotype |
isfreeaccess_bool |
true |
container_title |
Genetics, selection, evolution |
authorswithroles_txt_mv |
Fernando, Rohan L @@aut@@ Dekkers, Jack CM @@aut@@ Garrick, Dorian J @@aut@@ |
publishDateDaySort_date |
2014-09-22T00:00:00Z |
hierarchy_top_id |
312849052 |
id |
SPR026807882 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026807882</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519182714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1297-9686-46-50</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026807882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1297-9686-46-50-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fernando, Rohan L</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Fernando et al.; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Message Passing Interface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimate Breeding Value</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Well Linear Unbiased Prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomic Estimate Breeding Value</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impute Genotype</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dekkers, Jack CM</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garrick, Dorian J</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Genetics, selection, evolution</subfield><subfield code="d">London : BioMed Central, 1989</subfield><subfield code="g">46(2014), 1 vom: 22. Sept.</subfield><subfield code="w">(DE-627)312849052</subfield><subfield code="w">(DE-600)2012369-3</subfield><subfield code="x">1297-9686</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1297-9686-46-50</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Fernando, Rohan L |
spellingShingle |
Fernando, Rohan L misc Message Passing Interface misc Estimate Breeding Value misc Well Linear Unbiased Prediction misc Genomic Estimate Breeding Value misc Impute Genotype A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses |
authorStr |
Fernando, Rohan L |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312849052 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1297-9686 |
topic_title |
A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses Message Passing Interface (dpeaa)DE-He213 Estimate Breeding Value (dpeaa)DE-He213 Well Linear Unbiased Prediction (dpeaa)DE-He213 Genomic Estimate Breeding Value (dpeaa)DE-He213 Impute Genotype (dpeaa)DE-He213 |
topic |
misc Message Passing Interface misc Estimate Breeding Value misc Well Linear Unbiased Prediction misc Genomic Estimate Breeding Value misc Impute Genotype |
topic_unstemmed |
misc Message Passing Interface misc Estimate Breeding Value misc Well Linear Unbiased Prediction misc Genomic Estimate Breeding Value misc Impute Genotype |
topic_browse |
misc Message Passing Interface misc Estimate Breeding Value misc Well Linear Unbiased Prediction misc Genomic Estimate Breeding Value misc Impute Genotype |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genetics, selection, evolution |
hierarchy_parent_id |
312849052 |
hierarchy_top_title |
Genetics, selection, evolution |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)312849052 (DE-600)2012369-3 |
title |
A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses |
ctrlnum |
(DE-627)SPR026807882 (SPR)1297-9686-46-50-e |
title_full |
A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses |
author_sort |
Fernando, Rohan L |
journal |
Genetics, selection, evolution |
journalStr |
Genetics, selection, evolution |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Fernando, Rohan L Dekkers, Jack CM Garrick, Dorian J |
container_volume |
46 |
format_se |
Elektronische Aufsätze |
author-letter |
Fernando, Rohan L |
doi_str_mv |
10.1186/1297-9686-46-50 |
title_sort |
class of bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses |
title_auth |
A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses |
abstract |
Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications. © Fernando et al.; licensee BioMed Central Ltd. 2014 |
abstractGer |
Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications. © Fernando et al.; licensee BioMed Central Ltd. 2014 |
abstract_unstemmed |
Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications. © Fernando et al.; licensee BioMed Central Ltd. 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses |
url |
https://dx.doi.org/10.1186/1297-9686-46-50 |
remote_bool |
true |
author2 |
Dekkers, Jack CM Garrick, Dorian J |
author2Str |
Dekkers, Jack CM Garrick, Dorian J |
ppnlink |
312849052 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1297-9686-46-50 |
up_date |
2024-07-03T22:50:33.851Z |
_version_ |
1803600038569443328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026807882</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519182714.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1297-9686-46-50</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026807882</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1297-9686-46-50-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fernando, Rohan L</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A class of Bayesian methods to combine large numbers of genotyped and non-genotyped animals for whole-genome analyses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Fernando et al.; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background To obtain predictions that are not biased by selection, the conditional mean of the breeding values must be computed given the data that were used for selection. When single nucleotide polymorphism (SNP) effects have a normal distribution, it can be argued that single-step best linear unbiased prediction (SS-BLUP) yields a conditional mean of the breeding values. Obtaining SS-BLUP, however, requires computing the inverse of the dense matrix G of genomic relationships, which will become infeasible as the number of genotyped animals increases. Also, computing G requires the frequencies of SNP alleles in the founders, which are not available in most situations. Furthermore, SS-BLUP is expected to perform poorly relative to variable selection models such as BayesB and BayesC as marker densities increase. Methods A strategy is presented for Bayesian regression models (SSBR) that combines all available data from genotyped and non-genotyped animals, as in SS-BLUP, but accommodates a wider class of models. Our strategy uses imputed marker covariates for animals that are not genotyped, together with an appropriate residual genetic effect to accommodate deviations between true and imputed genotypes. Under normality, one formulation of SSBR yields results identical to SS-BLUP, but does not require computing G or its inverse and provides richer inferences. At present, Bayesian regression analyses are used with a few thousand genotyped individuals. However, when SSBR is applied to all animals in a breeding program, there will be a 100 to 200-fold increase in the number of animals and an associated 100 to 200-fold increase in computing time. Parallel computing strategies can be used to reduce computing time. In one such strategy, a 58-fold speedup was achieved using 120 cores. Discussion In SSBR and SS-BLUP, phenotype, genotype and pedigree information are combined in a single-step. Unlike SS-BLUP, SSBR is not limited to normally distributed marker effects; it can be used when marker effects have a t distribution, as in BayesA, or mixture distributions, as in BayesB or BayesC π. Furthermore, it has the advantage that matrix inversion is not required. We have investigated parallel computing to speedup SSBR analyses so they can be used for routine applications.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Message Passing Interface</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Estimate Breeding Value</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Well Linear Unbiased Prediction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genomic Estimate Breeding Value</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Impute Genotype</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dekkers, Jack CM</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Garrick, Dorian J</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Genetics, selection, evolution</subfield><subfield code="d">London : BioMed Central, 1989</subfield><subfield code="g">46(2014), 1 vom: 22. Sept.</subfield><subfield code="w">(DE-627)312849052</subfield><subfield code="w">(DE-600)2012369-3</subfield><subfield code="x">1297-9686</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:46</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1297-9686-46-50</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">46</subfield><subfield code="j">2014</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.401434 |