Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches
Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysi...
Ausführliche Beschreibung
Autor*in: |
Guo, Yuanmei [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: Genetics, selection, evolution - London : BioMed Central, 1989, 49(2017), 1 vom: 14. Feb. |
---|---|
Übergeordnetes Werk: |
volume:49 ; year:2017 ; number:1 ; day:14 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s12711-017-0295-4 |
---|
Katalog-ID: |
SPR026810719 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026810719 | ||
003 | DE-627 | ||
005 | 20230519182719.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12711-017-0295-4 |2 doi | |
035 | |a (DE-627)SPR026810719 | ||
035 | |a (SPR)s12711-017-0295-4-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Guo, Yuanmei |e verfasserin |4 aut | |
245 | 1 | 0 | |a Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2017 | ||
520 | |a Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian $ F_{2} $ intercross population and Chinese Sutai, Laiwu and Erhualian populations. Results We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the $ F_{2} $ and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the $ F_{2} $ and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. Conclusions We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the $ F_{2} $, Erhualian and Sutai populations. | ||
650 | 4 | |a Quantitative Trait Locus |7 (dpeaa)DE-He213 | |
650 | 4 | |a Backfat Thickness |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fatness Trait |7 (dpeaa)DE-He213 | |
650 | 4 | |a Suggestive Locus |7 (dpeaa)DE-He213 | |
650 | 4 | |a Traditional Quantitative Trait Locus Mapping |7 (dpeaa)DE-He213 | |
700 | 1 | |a Huang, Yixuan |4 aut | |
700 | 1 | |a Hou, Lijuan |4 aut | |
700 | 1 | |a Ma, Junwu |4 aut | |
700 | 1 | |a Chen, Congying |4 aut | |
700 | 1 | |a Ai, Huashui |4 aut | |
700 | 1 | |a Huang, Lusheng |4 aut | |
700 | 1 | |a Ren, Jun |0 (orcid)0000-0001-6664-3998 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Genetics, selection, evolution |d London : BioMed Central, 1989 |g 49(2017), 1 vom: 14. Feb. |w (DE-627)312849052 |w (DE-600)2012369-3 |x 1297-9686 |7 nnns |
773 | 1 | 8 | |g volume:49 |g year:2017 |g number:1 |g day:14 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12711-017-0295-4 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 49 |j 2017 |e 1 |b 14 |c 02 |
author_variant |
y g yg y h yh l h lh j m jm c c cc h a ha l h lh j r jr |
---|---|
matchkey_str |
article:12979686:2017----::eoeieeetoogntcakrascaewtgotadansifupgou |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1186/s12711-017-0295-4 doi (DE-627)SPR026810719 (SPR)s12711-017-0295-4-e DE-627 ger DE-627 rakwb eng Guo, Yuanmei verfasserin aut Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian $ F_{2} $ intercross population and Chinese Sutai, Laiwu and Erhualian populations. Results We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the $ F_{2} $ and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the $ F_{2} $ and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. Conclusions We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the $ F_{2} $, Erhualian and Sutai populations. Quantitative Trait Locus (dpeaa)DE-He213 Backfat Thickness (dpeaa)DE-He213 Fatness Trait (dpeaa)DE-He213 Suggestive Locus (dpeaa)DE-He213 Traditional Quantitative Trait Locus Mapping (dpeaa)DE-He213 Huang, Yixuan aut Hou, Lijuan aut Ma, Junwu aut Chen, Congying aut Ai, Huashui aut Huang, Lusheng aut Ren, Jun (orcid)0000-0001-6664-3998 aut Enthalten in Genetics, selection, evolution London : BioMed Central, 1989 49(2017), 1 vom: 14. Feb. (DE-627)312849052 (DE-600)2012369-3 1297-9686 nnns volume:49 year:2017 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12711-017-0295-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2017 1 14 02 |
spelling |
10.1186/s12711-017-0295-4 doi (DE-627)SPR026810719 (SPR)s12711-017-0295-4-e DE-627 ger DE-627 rakwb eng Guo, Yuanmei verfasserin aut Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian $ F_{2} $ intercross population and Chinese Sutai, Laiwu and Erhualian populations. Results We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the $ F_{2} $ and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the $ F_{2} $ and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. Conclusions We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the $ F_{2} $, Erhualian and Sutai populations. Quantitative Trait Locus (dpeaa)DE-He213 Backfat Thickness (dpeaa)DE-He213 Fatness Trait (dpeaa)DE-He213 Suggestive Locus (dpeaa)DE-He213 Traditional Quantitative Trait Locus Mapping (dpeaa)DE-He213 Huang, Yixuan aut Hou, Lijuan aut Ma, Junwu aut Chen, Congying aut Ai, Huashui aut Huang, Lusheng aut Ren, Jun (orcid)0000-0001-6664-3998 aut Enthalten in Genetics, selection, evolution London : BioMed Central, 1989 49(2017), 1 vom: 14. Feb. (DE-627)312849052 (DE-600)2012369-3 1297-9686 nnns volume:49 year:2017 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12711-017-0295-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2017 1 14 02 |
allfields_unstemmed |
10.1186/s12711-017-0295-4 doi (DE-627)SPR026810719 (SPR)s12711-017-0295-4-e DE-627 ger DE-627 rakwb eng Guo, Yuanmei verfasserin aut Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian $ F_{2} $ intercross population and Chinese Sutai, Laiwu and Erhualian populations. Results We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the $ F_{2} $ and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the $ F_{2} $ and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. Conclusions We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the $ F_{2} $, Erhualian and Sutai populations. Quantitative Trait Locus (dpeaa)DE-He213 Backfat Thickness (dpeaa)DE-He213 Fatness Trait (dpeaa)DE-He213 Suggestive Locus (dpeaa)DE-He213 Traditional Quantitative Trait Locus Mapping (dpeaa)DE-He213 Huang, Yixuan aut Hou, Lijuan aut Ma, Junwu aut Chen, Congying aut Ai, Huashui aut Huang, Lusheng aut Ren, Jun (orcid)0000-0001-6664-3998 aut Enthalten in Genetics, selection, evolution London : BioMed Central, 1989 49(2017), 1 vom: 14. Feb. (DE-627)312849052 (DE-600)2012369-3 1297-9686 nnns volume:49 year:2017 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12711-017-0295-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2017 1 14 02 |
allfieldsGer |
10.1186/s12711-017-0295-4 doi (DE-627)SPR026810719 (SPR)s12711-017-0295-4-e DE-627 ger DE-627 rakwb eng Guo, Yuanmei verfasserin aut Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian $ F_{2} $ intercross population and Chinese Sutai, Laiwu and Erhualian populations. Results We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the $ F_{2} $ and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the $ F_{2} $ and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. Conclusions We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the $ F_{2} $, Erhualian and Sutai populations. Quantitative Trait Locus (dpeaa)DE-He213 Backfat Thickness (dpeaa)DE-He213 Fatness Trait (dpeaa)DE-He213 Suggestive Locus (dpeaa)DE-He213 Traditional Quantitative Trait Locus Mapping (dpeaa)DE-He213 Huang, Yixuan aut Hou, Lijuan aut Ma, Junwu aut Chen, Congying aut Ai, Huashui aut Huang, Lusheng aut Ren, Jun (orcid)0000-0001-6664-3998 aut Enthalten in Genetics, selection, evolution London : BioMed Central, 1989 49(2017), 1 vom: 14. Feb. (DE-627)312849052 (DE-600)2012369-3 1297-9686 nnns volume:49 year:2017 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12711-017-0295-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2017 1 14 02 |
allfieldsSound |
10.1186/s12711-017-0295-4 doi (DE-627)SPR026810719 (SPR)s12711-017-0295-4-e DE-627 ger DE-627 rakwb eng Guo, Yuanmei verfasserin aut Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian $ F_{2} $ intercross population and Chinese Sutai, Laiwu and Erhualian populations. Results We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the $ F_{2} $ and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the $ F_{2} $ and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. Conclusions We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the $ F_{2} $, Erhualian and Sutai populations. Quantitative Trait Locus (dpeaa)DE-He213 Backfat Thickness (dpeaa)DE-He213 Fatness Trait (dpeaa)DE-He213 Suggestive Locus (dpeaa)DE-He213 Traditional Quantitative Trait Locus Mapping (dpeaa)DE-He213 Huang, Yixuan aut Hou, Lijuan aut Ma, Junwu aut Chen, Congying aut Ai, Huashui aut Huang, Lusheng aut Ren, Jun (orcid)0000-0001-6664-3998 aut Enthalten in Genetics, selection, evolution London : BioMed Central, 1989 49(2017), 1 vom: 14. Feb. (DE-627)312849052 (DE-600)2012369-3 1297-9686 nnns volume:49 year:2017 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12711-017-0295-4 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 49 2017 1 14 02 |
language |
English |
source |
Enthalten in Genetics, selection, evolution 49(2017), 1 vom: 14. Feb. volume:49 year:2017 number:1 day:14 month:02 |
sourceStr |
Enthalten in Genetics, selection, evolution 49(2017), 1 vom: 14. Feb. volume:49 year:2017 number:1 day:14 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantitative Trait Locus Backfat Thickness Fatness Trait Suggestive Locus Traditional Quantitative Trait Locus Mapping |
isfreeaccess_bool |
true |
container_title |
Genetics, selection, evolution |
authorswithroles_txt_mv |
Guo, Yuanmei @@aut@@ Huang, Yixuan @@aut@@ Hou, Lijuan @@aut@@ Ma, Junwu @@aut@@ Chen, Congying @@aut@@ Ai, Huashui @@aut@@ Huang, Lusheng @@aut@@ Ren, Jun @@aut@@ |
publishDateDaySort_date |
2017-02-14T00:00:00Z |
hierarchy_top_id |
312849052 |
id |
SPR026810719 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026810719</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519182719.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12711-017-0295-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026810719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12711-017-0295-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Yuanmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian $ F_{2} $ intercross population and Chinese Sutai, Laiwu and Erhualian populations. Results We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the $ F_{2} $ and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the $ F_{2} $ and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. Conclusions We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the $ F_{2} $, Erhualian and Sutai populations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative Trait Locus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backfat Thickness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatness Trait</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Suggestive Locus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traditional Quantitative Trait Locus Mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Yixuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Lijuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Junwu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Congying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ai, Huashui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Lusheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Jun</subfield><subfield code="0">(orcid)0000-0001-6664-3998</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Genetics, selection, evolution</subfield><subfield code="d">London : BioMed Central, 1989</subfield><subfield code="g">49(2017), 1 vom: 14. Feb.</subfield><subfield code="w">(DE-627)312849052</subfield><subfield code="w">(DE-600)2012369-3</subfield><subfield code="x">1297-9686</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12711-017-0295-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Guo, Yuanmei |
spellingShingle |
Guo, Yuanmei misc Quantitative Trait Locus misc Backfat Thickness misc Fatness Trait misc Suggestive Locus misc Traditional Quantitative Trait Locus Mapping Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches |
authorStr |
Guo, Yuanmei |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)312849052 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1297-9686 |
topic_title |
Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches Quantitative Trait Locus (dpeaa)DE-He213 Backfat Thickness (dpeaa)DE-He213 Fatness Trait (dpeaa)DE-He213 Suggestive Locus (dpeaa)DE-He213 Traditional Quantitative Trait Locus Mapping (dpeaa)DE-He213 |
topic |
misc Quantitative Trait Locus misc Backfat Thickness misc Fatness Trait misc Suggestive Locus misc Traditional Quantitative Trait Locus Mapping |
topic_unstemmed |
misc Quantitative Trait Locus misc Backfat Thickness misc Fatness Trait misc Suggestive Locus misc Traditional Quantitative Trait Locus Mapping |
topic_browse |
misc Quantitative Trait Locus misc Backfat Thickness misc Fatness Trait misc Suggestive Locus misc Traditional Quantitative Trait Locus Mapping |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
Genetics, selection, evolution |
hierarchy_parent_id |
312849052 |
hierarchy_top_title |
Genetics, selection, evolution |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)312849052 (DE-600)2012369-3 |
title |
Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches |
ctrlnum |
(DE-627)SPR026810719 (SPR)s12711-017-0295-4-e |
title_full |
Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches |
author_sort |
Guo, Yuanmei |
journal |
Genetics, selection, evolution |
journalStr |
Genetics, selection, evolution |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Guo, Yuanmei Huang, Yixuan Hou, Lijuan Ma, Junwu Chen, Congying Ai, Huashui Huang, Lusheng Ren, Jun |
container_volume |
49 |
format_se |
Elektronische Aufsätze |
author-letter |
Guo, Yuanmei |
doi_str_mv |
10.1186/s12711-017-0295-4 |
normlink |
(ORCID)0000-0001-6664-3998 |
normlink_prefix_str_mv |
(orcid)0000-0001-6664-3998 |
title_sort |
genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches |
title_auth |
Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches |
abstract |
Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian $ F_{2} $ intercross population and Chinese Sutai, Laiwu and Erhualian populations. Results We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the $ F_{2} $ and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the $ F_{2} $ and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. Conclusions We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the $ F_{2} $, Erhualian and Sutai populations. © The Author(s) 2017 |
abstractGer |
Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian $ F_{2} $ intercross population and Chinese Sutai, Laiwu and Erhualian populations. Results We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the $ F_{2} $ and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the $ F_{2} $ and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. Conclusions We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the $ F_{2} $, Erhualian and Sutai populations. © The Author(s) 2017 |
abstract_unstemmed |
Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian $ F_{2} $ intercross population and Chinese Sutai, Laiwu and Erhualian populations. Results We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the $ F_{2} $ and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the $ F_{2} $ and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. Conclusions We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the $ F_{2} $, Erhualian and Sutai populations. © The Author(s) 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_2003 GBV_ILN_2014 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches |
url |
https://dx.doi.org/10.1186/s12711-017-0295-4 |
remote_bool |
true |
author2 |
Huang, Yixuan Hou, Lijuan Ma, Junwu Chen, Congying Ai, Huashui Huang, Lusheng Ren, Jun |
author2Str |
Huang, Yixuan Hou, Lijuan Ma, Junwu Chen, Congying Ai, Huashui Huang, Lusheng Ren, Jun |
ppnlink |
312849052 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12711-017-0295-4 |
up_date |
2024-07-03T22:51:30.408Z |
_version_ |
1803600097873756160 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026810719</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519182719.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12711-017-0295-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026810719</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12711-017-0295-4-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Yuanmei</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Genome-wide detection of genetic markers associated with growth and fatness in four pig populations using four approaches</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Genome-wide association studies (GWAS) have been extensively used to identify genomic regions associated with a variety of phenotypic traits in pigs. Until now, most GWAS have explored single-trait association models. Here, we conducted both single- and multi-trait GWAS and a meta-analysis for nine fatness and growth traits on 2004 pigs from four diverse populations, including a White Duroc × Erhualian $ F_{2} $ intercross population and Chinese Sutai, Laiwu and Erhualian populations. Results We identified 44 chromosomal regions that were associated with the nine traits, including four genome-wide significant single nucleotide polymorphisms (SNPs) on SSC2 (SSC for Sus scrofa chromosome), 4, 7 and X. Compared to the single-population GWAS, the meta-analysis was less powerful for the identification of SNPs with population-specific effects but more powerful for the detection of SNPs with population-shared effects. Multiple-trait analysis reduced the power to detect trait-specific SNPs but significantly enhanced the power to identify common SNPs across traits. The SNP on SSC7 had pleiotropic effects on the nine traits in the $ F_{2} $ and Erhualian populations. Another pleiotropic SNP was observed on SSCX for these traits in the $ F_{2} $ and Sutai populations. Both population-specific and shared SNPs were identified in this study, thus reflecting the complex genetic architecture of pig growth and fatness traits. Conclusions We demonstrate that the multi-trait method and the meta-analysis on multiple populations can be used to increase the power of GWAS. The two significant SNPs on SSC7 and X had pleiotropic effects in the $ F_{2} $, Erhualian and Sutai populations.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantitative Trait Locus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backfat Thickness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fatness Trait</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Suggestive Locus</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Traditional Quantitative Trait Locus Mapping</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Yixuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hou, Lijuan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ma, Junwu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Congying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ai, Huashui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Lusheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Jun</subfield><subfield code="0">(orcid)0000-0001-6664-3998</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Genetics, selection, evolution</subfield><subfield code="d">London : BioMed Central, 1989</subfield><subfield code="g">49(2017), 1 vom: 14. Feb.</subfield><subfield code="w">(DE-627)312849052</subfield><subfield code="w">(DE-600)2012369-3</subfield><subfield code="x">1297-9686</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:49</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12711-017-0295-4</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">49</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.4013977 |