Analyzing 2D gel images using a two-component empirical bayes model
Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as...
Ausführliche Beschreibung
Autor*in: |
Li, Feng [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2011 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC bioinformatics - London : BioMed Central, 2000, 12(2011), 1 vom: 08. Nov. |
---|---|
Übergeordnetes Werk: |
volume:12 ; year:2011 ; number:1 ; day:08 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/1471-2105-12-433 |
---|
Katalog-ID: |
SPR026872129 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026872129 | ||
003 | DE-627 | ||
005 | 20230519190155.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2011 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2105-12-433 |2 doi | |
035 | |a (DE-627)SPR026872129 | ||
035 | |a (SPR)1471-2105-12-433-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Li, Feng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analyzing 2D gel images using a two-component empirical bayes model |
264 | 1 | |c 2011 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011 | ||
520 | |a Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that the estimated null component will be no greater than the mixture density as it should be. Results We present an implementation of a two-component EB model for the analysis of 2D gel images. In contrast to the published estimation method, we propose to estimate the mixture and null densities simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed approach is validated using a set of simulated gels. Conclusions The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture density and empirical null component simultaneously. The proposed constrained estimation method always yields valid estimates and more stable results. The proposed estimation approach proposed can be applied to other contexts where large-scale hypothesis testing occurs. | ||
650 | 4 | |a Mixture Density |7 (dpeaa)DE-He213 | |
650 | 4 | |a True Null Hypothesis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Spot Quantification |7 (dpeaa)DE-He213 | |
650 | 4 | |a Spot Match |7 (dpeaa)DE-He213 | |
650 | 4 | |a Local False Discovery Rate |7 (dpeaa)DE-He213 | |
700 | 1 | |a Seillier-Moiseiwitsch, Françoise |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC bioinformatics |d London : BioMed Central, 2000 |g 12(2011), 1 vom: 08. Nov. |w (DE-627)326644814 |w (DE-600)2041484-5 |x 1471-2105 |7 nnns |
773 | 1 | 8 | |g volume:12 |g year:2011 |g number:1 |g day:08 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2105-12-433 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 12 |j 2011 |e 1 |b 08 |c 11 |
author_variant |
f l fl f s m fsm |
---|---|
matchkey_str |
article:14712105:2011----::nlzn2glmgssnawcmoetmi |
hierarchy_sort_str |
2011 |
publishDate |
2011 |
allfields |
10.1186/1471-2105-12-433 doi (DE-627)SPR026872129 (SPR)1471-2105-12-433-e DE-627 ger DE-627 rakwb eng Li, Feng verfasserin aut Analyzing 2D gel images using a two-component empirical bayes model 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011 Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that the estimated null component will be no greater than the mixture density as it should be. Results We present an implementation of a two-component EB model for the analysis of 2D gel images. In contrast to the published estimation method, we propose to estimate the mixture and null densities simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed approach is validated using a set of simulated gels. Conclusions The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture density and empirical null component simultaneously. The proposed constrained estimation method always yields valid estimates and more stable results. The proposed estimation approach proposed can be applied to other contexts where large-scale hypothesis testing occurs. Mixture Density (dpeaa)DE-He213 True Null Hypothesis (dpeaa)DE-He213 Spot Quantification (dpeaa)DE-He213 Spot Match (dpeaa)DE-He213 Local False Discovery Rate (dpeaa)DE-He213 Seillier-Moiseiwitsch, Françoise aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 12(2011), 1 vom: 08. Nov. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:12 year:2011 number:1 day:08 month:11 https://dx.doi.org/10.1186/1471-2105-12-433 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2011 1 08 11 |
spelling |
10.1186/1471-2105-12-433 doi (DE-627)SPR026872129 (SPR)1471-2105-12-433-e DE-627 ger DE-627 rakwb eng Li, Feng verfasserin aut Analyzing 2D gel images using a two-component empirical bayes model 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011 Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that the estimated null component will be no greater than the mixture density as it should be. Results We present an implementation of a two-component EB model for the analysis of 2D gel images. In contrast to the published estimation method, we propose to estimate the mixture and null densities simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed approach is validated using a set of simulated gels. Conclusions The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture density and empirical null component simultaneously. The proposed constrained estimation method always yields valid estimates and more stable results. The proposed estimation approach proposed can be applied to other contexts where large-scale hypothesis testing occurs. Mixture Density (dpeaa)DE-He213 True Null Hypothesis (dpeaa)DE-He213 Spot Quantification (dpeaa)DE-He213 Spot Match (dpeaa)DE-He213 Local False Discovery Rate (dpeaa)DE-He213 Seillier-Moiseiwitsch, Françoise aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 12(2011), 1 vom: 08. Nov. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:12 year:2011 number:1 day:08 month:11 https://dx.doi.org/10.1186/1471-2105-12-433 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2011 1 08 11 |
allfields_unstemmed |
10.1186/1471-2105-12-433 doi (DE-627)SPR026872129 (SPR)1471-2105-12-433-e DE-627 ger DE-627 rakwb eng Li, Feng verfasserin aut Analyzing 2D gel images using a two-component empirical bayes model 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011 Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that the estimated null component will be no greater than the mixture density as it should be. Results We present an implementation of a two-component EB model for the analysis of 2D gel images. In contrast to the published estimation method, we propose to estimate the mixture and null densities simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed approach is validated using a set of simulated gels. Conclusions The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture density and empirical null component simultaneously. The proposed constrained estimation method always yields valid estimates and more stable results. The proposed estimation approach proposed can be applied to other contexts where large-scale hypothesis testing occurs. Mixture Density (dpeaa)DE-He213 True Null Hypothesis (dpeaa)DE-He213 Spot Quantification (dpeaa)DE-He213 Spot Match (dpeaa)DE-He213 Local False Discovery Rate (dpeaa)DE-He213 Seillier-Moiseiwitsch, Françoise aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 12(2011), 1 vom: 08. Nov. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:12 year:2011 number:1 day:08 month:11 https://dx.doi.org/10.1186/1471-2105-12-433 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2011 1 08 11 |
allfieldsGer |
10.1186/1471-2105-12-433 doi (DE-627)SPR026872129 (SPR)1471-2105-12-433-e DE-627 ger DE-627 rakwb eng Li, Feng verfasserin aut Analyzing 2D gel images using a two-component empirical bayes model 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011 Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that the estimated null component will be no greater than the mixture density as it should be. Results We present an implementation of a two-component EB model for the analysis of 2D gel images. In contrast to the published estimation method, we propose to estimate the mixture and null densities simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed approach is validated using a set of simulated gels. Conclusions The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture density and empirical null component simultaneously. The proposed constrained estimation method always yields valid estimates and more stable results. The proposed estimation approach proposed can be applied to other contexts where large-scale hypothesis testing occurs. Mixture Density (dpeaa)DE-He213 True Null Hypothesis (dpeaa)DE-He213 Spot Quantification (dpeaa)DE-He213 Spot Match (dpeaa)DE-He213 Local False Discovery Rate (dpeaa)DE-He213 Seillier-Moiseiwitsch, Françoise aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 12(2011), 1 vom: 08. Nov. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:12 year:2011 number:1 day:08 month:11 https://dx.doi.org/10.1186/1471-2105-12-433 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2011 1 08 11 |
allfieldsSound |
10.1186/1471-2105-12-433 doi (DE-627)SPR026872129 (SPR)1471-2105-12-433-e DE-627 ger DE-627 rakwb eng Li, Feng verfasserin aut Analyzing 2D gel images using a two-component empirical bayes model 2011 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011 Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that the estimated null component will be no greater than the mixture density as it should be. Results We present an implementation of a two-component EB model for the analysis of 2D gel images. In contrast to the published estimation method, we propose to estimate the mixture and null densities simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed approach is validated using a set of simulated gels. Conclusions The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture density and empirical null component simultaneously. The proposed constrained estimation method always yields valid estimates and more stable results. The proposed estimation approach proposed can be applied to other contexts where large-scale hypothesis testing occurs. Mixture Density (dpeaa)DE-He213 True Null Hypothesis (dpeaa)DE-He213 Spot Quantification (dpeaa)DE-He213 Spot Match (dpeaa)DE-He213 Local False Discovery Rate (dpeaa)DE-He213 Seillier-Moiseiwitsch, Françoise aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 12(2011), 1 vom: 08. Nov. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:12 year:2011 number:1 day:08 month:11 https://dx.doi.org/10.1186/1471-2105-12-433 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 12 2011 1 08 11 |
language |
English |
source |
Enthalten in BMC bioinformatics 12(2011), 1 vom: 08. Nov. volume:12 year:2011 number:1 day:08 month:11 |
sourceStr |
Enthalten in BMC bioinformatics 12(2011), 1 vom: 08. Nov. volume:12 year:2011 number:1 day:08 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mixture Density True Null Hypothesis Spot Quantification Spot Match Local False Discovery Rate |
isfreeaccess_bool |
true |
container_title |
BMC bioinformatics |
authorswithroles_txt_mv |
Li, Feng @@aut@@ Seillier-Moiseiwitsch, Françoise @@aut@@ |
publishDateDaySort_date |
2011-11-08T00:00:00Z |
hierarchy_top_id |
326644814 |
id |
SPR026872129 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026872129</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519190155.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2105-12-433</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026872129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2105-12-433-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analyzing 2D gel images using a two-component empirical bayes model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that the estimated null component will be no greater than the mixture density as it should be. Results We present an implementation of a two-component EB model for the analysis of 2D gel images. In contrast to the published estimation method, we propose to estimate the mixture and null densities simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed approach is validated using a set of simulated gels. Conclusions The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture density and empirical null component simultaneously. The proposed constrained estimation method always yields valid estimates and more stable results. The proposed estimation approach proposed can be applied to other contexts where large-scale hypothesis testing occurs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixture Density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">True Null Hypothesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spot Quantification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spot Match</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local False Discovery Rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seillier-Moiseiwitsch, Françoise</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">12(2011), 1 vom: 08. Nov.</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2105-12-433</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Li, Feng |
spellingShingle |
Li, Feng misc Mixture Density misc True Null Hypothesis misc Spot Quantification misc Spot Match misc Local False Discovery Rate Analyzing 2D gel images using a two-component empirical bayes model |
authorStr |
Li, Feng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644814 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2105 |
topic_title |
Analyzing 2D gel images using a two-component empirical bayes model Mixture Density (dpeaa)DE-He213 True Null Hypothesis (dpeaa)DE-He213 Spot Quantification (dpeaa)DE-He213 Spot Match (dpeaa)DE-He213 Local False Discovery Rate (dpeaa)DE-He213 |
topic |
misc Mixture Density misc True Null Hypothesis misc Spot Quantification misc Spot Match misc Local False Discovery Rate |
topic_unstemmed |
misc Mixture Density misc True Null Hypothesis misc Spot Quantification misc Spot Match misc Local False Discovery Rate |
topic_browse |
misc Mixture Density misc True Null Hypothesis misc Spot Quantification misc Spot Match misc Local False Discovery Rate |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC bioinformatics |
hierarchy_parent_id |
326644814 |
hierarchy_top_title |
BMC bioinformatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644814 (DE-600)2041484-5 |
title |
Analyzing 2D gel images using a two-component empirical bayes model |
ctrlnum |
(DE-627)SPR026872129 (SPR)1471-2105-12-433-e |
title_full |
Analyzing 2D gel images using a two-component empirical bayes model |
author_sort |
Li, Feng |
journal |
BMC bioinformatics |
journalStr |
BMC bioinformatics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2011 |
contenttype_str_mv |
txt |
author_browse |
Li, Feng Seillier-Moiseiwitsch, Françoise |
container_volume |
12 |
format_se |
Elektronische Aufsätze |
author-letter |
Li, Feng |
doi_str_mv |
10.1186/1471-2105-12-433 |
title_sort |
analyzing 2d gel images using a two-component empirical bayes model |
title_auth |
Analyzing 2D gel images using a two-component empirical bayes model |
abstract |
Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that the estimated null component will be no greater than the mixture density as it should be. Results We present an implementation of a two-component EB model for the analysis of 2D gel images. In contrast to the published estimation method, we propose to estimate the mixture and null densities simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed approach is validated using a set of simulated gels. Conclusions The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture density and empirical null component simultaneously. The proposed constrained estimation method always yields valid estimates and more stable results. The proposed estimation approach proposed can be applied to other contexts where large-scale hypothesis testing occurs. © Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011 |
abstractGer |
Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that the estimated null component will be no greater than the mixture density as it should be. Results We present an implementation of a two-component EB model for the analysis of 2D gel images. In contrast to the published estimation method, we propose to estimate the mixture and null densities simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed approach is validated using a set of simulated gels. Conclusions The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture density and empirical null component simultaneously. The proposed constrained estimation method always yields valid estimates and more stable results. The proposed estimation approach proposed can be applied to other contexts where large-scale hypothesis testing occurs. © Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011 |
abstract_unstemmed |
Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that the estimated null component will be no greater than the mixture density as it should be. Results We present an implementation of a two-component EB model for the analysis of 2D gel images. In contrast to the published estimation method, we propose to estimate the mixture and null densities simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed approach is validated using a set of simulated gels. Conclusions The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture density and empirical null component simultaneously. The proposed constrained estimation method always yields valid estimates and more stable results. The proposed estimation approach proposed can be applied to other contexts where large-scale hypothesis testing occurs. © Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Analyzing 2D gel images using a two-component empirical bayes model |
url |
https://dx.doi.org/10.1186/1471-2105-12-433 |
remote_bool |
true |
author2 |
Seillier-Moiseiwitsch, Françoise |
author2Str |
Seillier-Moiseiwitsch, Françoise |
ppnlink |
326644814 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2105-12-433 |
up_date |
2024-07-03T23:11:58.216Z |
_version_ |
1803601385322708992 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026872129</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519190155.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2011 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2105-12-433</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026872129</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2105-12-433-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analyzing 2D gel images using a two-component empirical bayes model</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2011</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Li and Seillier-Moiseiwitsch; licensee BioMed Central Ltd. 2011</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Two-dimensional polyacrylomide gel electrophoresis (2D gel, 2D PAGE, 2-DE) is a powerful tool for analyzing the proteome of a organism. Differential analysis of 2D gel images aims at finding proteins that change under different conditions, which leads to large-scale hypothesis testing as in microarray data analysis. Two-component empirical Bayes (EB) models have been widely discussed for large-scale hypothesis testing and applied in the context of genomic data. They have not been implemented for the differential analysis of 2D gel data. In the literature, the mixture and null densities of the test statistics are estimated separately. The estimation of the mixture density does not take into account assumptions about the null density. Thus, there is no guarantee that the estimated null component will be no greater than the mixture density as it should be. Results We present an implementation of a two-component EB model for the analysis of 2D gel images. In contrast to the published estimation method, we propose to estimate the mixture and null densities simultaneously using a constrained estimation approach, which relies on an iteratively re-weighted least-squares algorithm. The assumption about the null density is naturally taken into account in the estimation of the mixture density. This strategy is illustrated using a set of 2D gel images from a factorial experiment. The proposed approach is validated using a set of simulated gels. Conclusions The two-component EB model is a very useful for large-scale hypothesis testing. In proteomic analysis, the theoretical null density is often not appropriate. We demonstrate how to implement a two-component EB model for analyzing a set of 2D gel images. We show that it is necessary to estimate the mixture density and empirical null component simultaneously. The proposed constrained estimation method always yields valid estimates and more stable results. The proposed estimation approach proposed can be applied to other contexts where large-scale hypothesis testing occurs.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixture Density</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">True Null Hypothesis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spot Quantification</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spot Match</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local False Discovery Rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Seillier-Moiseiwitsch, Françoise</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">12(2011), 1 vom: 08. Nov.</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:12</subfield><subfield code="g">year:2011</subfield><subfield code="g">number:1</subfield><subfield code="g">day:08</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2105-12-433</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">12</subfield><subfield code="j">2011</subfield><subfield code="e">1</subfield><subfield code="b">08</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.401681 |