Boosting forward-time population genetic simulators through genotype compression
Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickl...
Ausführliche Beschreibung
Autor*in: |
Ruths, Troy [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Ruths and Nakhleh; licensee BioMed Central Ltd. 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC bioinformatics - London : BioMed Central, 2000, 14(2013), 1 vom: 14. Juni |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2013 ; number:1 ; day:14 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/1471-2105-14-192 |
---|
Katalog-ID: |
SPR026884461 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026884461 | ||
003 | DE-627 | ||
005 | 20230520012138.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2105-14-192 |2 doi | |
035 | |a (DE-627)SPR026884461 | ||
035 | |a (SPR)1471-2105-14-192-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ruths, Troy |e verfasserin |4 aut | |
245 | 1 | 0 | |a Boosting forward-time population genetic simulators through genotype compression |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Ruths and Nakhleh; licensee BioMed Central Ltd. 2013 | ||
520 | |a Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage. | ||
650 | 4 | |a Memory Usage |7 (dpeaa)DE-He213 | |
650 | 4 | |a Compression Algorithm |7 (dpeaa)DE-He213 | |
650 | 4 | |a Compression Technique |7 (dpeaa)DE-He213 | |
650 | 4 | |a Lossless Compression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Data Request |7 (dpeaa)DE-He213 | |
700 | 1 | |a Nakhleh, Luay |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC bioinformatics |d London : BioMed Central, 2000 |g 14(2013), 1 vom: 14. Juni |w (DE-627)326644814 |w (DE-600)2041484-5 |x 1471-2105 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2013 |g number:1 |g day:14 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2105-14-192 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2013 |e 1 |b 14 |c 06 |
author_variant |
t r tr l n ln |
---|---|
matchkey_str |
article:14712105:2013----::osigowrtmppltogntciuaoshogg |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1186/1471-2105-14-192 doi (DE-627)SPR026884461 (SPR)1471-2105-14-192-e DE-627 ger DE-627 rakwb eng Ruths, Troy verfasserin aut Boosting forward-time population genetic simulators through genotype compression 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ruths and Nakhleh; licensee BioMed Central Ltd. 2013 Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage. Memory Usage (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Compression Technique (dpeaa)DE-He213 Lossless Compression (dpeaa)DE-He213 Data Request (dpeaa)DE-He213 Nakhleh, Luay aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 14(2013), 1 vom: 14. Juni (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:14 year:2013 number:1 day:14 month:06 https://dx.doi.org/10.1186/1471-2105-14-192 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 14 06 |
spelling |
10.1186/1471-2105-14-192 doi (DE-627)SPR026884461 (SPR)1471-2105-14-192-e DE-627 ger DE-627 rakwb eng Ruths, Troy verfasserin aut Boosting forward-time population genetic simulators through genotype compression 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ruths and Nakhleh; licensee BioMed Central Ltd. 2013 Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage. Memory Usage (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Compression Technique (dpeaa)DE-He213 Lossless Compression (dpeaa)DE-He213 Data Request (dpeaa)DE-He213 Nakhleh, Luay aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 14(2013), 1 vom: 14. Juni (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:14 year:2013 number:1 day:14 month:06 https://dx.doi.org/10.1186/1471-2105-14-192 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 14 06 |
allfields_unstemmed |
10.1186/1471-2105-14-192 doi (DE-627)SPR026884461 (SPR)1471-2105-14-192-e DE-627 ger DE-627 rakwb eng Ruths, Troy verfasserin aut Boosting forward-time population genetic simulators through genotype compression 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ruths and Nakhleh; licensee BioMed Central Ltd. 2013 Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage. Memory Usage (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Compression Technique (dpeaa)DE-He213 Lossless Compression (dpeaa)DE-He213 Data Request (dpeaa)DE-He213 Nakhleh, Luay aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 14(2013), 1 vom: 14. Juni (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:14 year:2013 number:1 day:14 month:06 https://dx.doi.org/10.1186/1471-2105-14-192 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 14 06 |
allfieldsGer |
10.1186/1471-2105-14-192 doi (DE-627)SPR026884461 (SPR)1471-2105-14-192-e DE-627 ger DE-627 rakwb eng Ruths, Troy verfasserin aut Boosting forward-time population genetic simulators through genotype compression 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ruths and Nakhleh; licensee BioMed Central Ltd. 2013 Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage. Memory Usage (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Compression Technique (dpeaa)DE-He213 Lossless Compression (dpeaa)DE-He213 Data Request (dpeaa)DE-He213 Nakhleh, Luay aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 14(2013), 1 vom: 14. Juni (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:14 year:2013 number:1 day:14 month:06 https://dx.doi.org/10.1186/1471-2105-14-192 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 14 06 |
allfieldsSound |
10.1186/1471-2105-14-192 doi (DE-627)SPR026884461 (SPR)1471-2105-14-192-e DE-627 ger DE-627 rakwb eng Ruths, Troy verfasserin aut Boosting forward-time population genetic simulators through genotype compression 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ruths and Nakhleh; licensee BioMed Central Ltd. 2013 Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage. Memory Usage (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Compression Technique (dpeaa)DE-He213 Lossless Compression (dpeaa)DE-He213 Data Request (dpeaa)DE-He213 Nakhleh, Luay aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 14(2013), 1 vom: 14. Juni (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:14 year:2013 number:1 day:14 month:06 https://dx.doi.org/10.1186/1471-2105-14-192 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 14 06 |
language |
English |
source |
Enthalten in BMC bioinformatics 14(2013), 1 vom: 14. Juni volume:14 year:2013 number:1 day:14 month:06 |
sourceStr |
Enthalten in BMC bioinformatics 14(2013), 1 vom: 14. Juni volume:14 year:2013 number:1 day:14 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Memory Usage Compression Algorithm Compression Technique Lossless Compression Data Request |
isfreeaccess_bool |
true |
container_title |
BMC bioinformatics |
authorswithroles_txt_mv |
Ruths, Troy @@aut@@ Nakhleh, Luay @@aut@@ |
publishDateDaySort_date |
2013-06-14T00:00:00Z |
hierarchy_top_id |
326644814 |
id |
SPR026884461 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026884461</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520012138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2105-14-192</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026884461</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2105-14-192-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ruths, Troy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boosting forward-time population genetic simulators through genotype compression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Ruths and Nakhleh; licensee BioMed Central Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memory Usage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compression Algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compression Technique</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lossless Compression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Request</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakhleh, Luay</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">14(2013), 1 vom: 14. Juni</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2105-14-192</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Ruths, Troy |
spellingShingle |
Ruths, Troy misc Memory Usage misc Compression Algorithm misc Compression Technique misc Lossless Compression misc Data Request Boosting forward-time population genetic simulators through genotype compression |
authorStr |
Ruths, Troy |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644814 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2105 |
topic_title |
Boosting forward-time population genetic simulators through genotype compression Memory Usage (dpeaa)DE-He213 Compression Algorithm (dpeaa)DE-He213 Compression Technique (dpeaa)DE-He213 Lossless Compression (dpeaa)DE-He213 Data Request (dpeaa)DE-He213 |
topic |
misc Memory Usage misc Compression Algorithm misc Compression Technique misc Lossless Compression misc Data Request |
topic_unstemmed |
misc Memory Usage misc Compression Algorithm misc Compression Technique misc Lossless Compression misc Data Request |
topic_browse |
misc Memory Usage misc Compression Algorithm misc Compression Technique misc Lossless Compression misc Data Request |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC bioinformatics |
hierarchy_parent_id |
326644814 |
hierarchy_top_title |
BMC bioinformatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644814 (DE-600)2041484-5 |
title |
Boosting forward-time population genetic simulators through genotype compression |
ctrlnum |
(DE-627)SPR026884461 (SPR)1471-2105-14-192-e |
title_full |
Boosting forward-time population genetic simulators through genotype compression |
author_sort |
Ruths, Troy |
journal |
BMC bioinformatics |
journalStr |
BMC bioinformatics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Ruths, Troy Nakhleh, Luay |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Ruths, Troy |
doi_str_mv |
10.1186/1471-2105-14-192 |
title_sort |
boosting forward-time population genetic simulators through genotype compression |
title_auth |
Boosting forward-time population genetic simulators through genotype compression |
abstract |
Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage. © Ruths and Nakhleh; licensee BioMed Central Ltd. 2013 |
abstractGer |
Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage. © Ruths and Nakhleh; licensee BioMed Central Ltd. 2013 |
abstract_unstemmed |
Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage. © Ruths and Nakhleh; licensee BioMed Central Ltd. 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Boosting forward-time population genetic simulators through genotype compression |
url |
https://dx.doi.org/10.1186/1471-2105-14-192 |
remote_bool |
true |
author2 |
Nakhleh, Luay |
author2Str |
Nakhleh, Luay |
ppnlink |
326644814 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2105-14-192 |
up_date |
2024-07-03T23:15:51.215Z |
_version_ |
1803601629644062720 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026884461</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520012138.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2105-14-192</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026884461</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2105-14-192-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ruths, Troy</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Boosting forward-time population genetic simulators through genotype compression</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Ruths and Nakhleh; licensee BioMed Central Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Forward-time population genetic simulations play a central role in deriving and testing evolutionary hypotheses. Such simulations may be data-intensive, depending on the settings to the various parameters controlling them. In particular, for certain settings, the data footprint may quickly exceed the memory of a single compute node. Results We develop a novel and general method for addressing the memory issue inherent in forward-time simulations by compressing and decompressing, in real-time, active and ancestral genotypes, while carefully accounting for the time overhead. We propose a general graph data structure for compressing the genotype space explored during a simulation run, along with efficient algorithms for constructing and updating compressed genotypes which support both mutation and recombination. We tested the performance of our method in very large-scale simulations. Results show that our method not only scales well, but that it also overcomes memory issues that would cripple existing tools. Conclusions As evolutionary analyses are being increasingly performed on genomes, pathways, and networks, particularly in the era of systems biology, scaling population genetic simulators to handle large-scale simulations is crucial. We believe our method offers a significant step in that direction. Further, the techniques we provide are generic and can be integrated with existing population genetic simulators to boost their performance in terms of memory usage.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memory Usage</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compression Algorithm</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Compression Technique</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lossless Compression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data Request</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nakhleh, Luay</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">14(2013), 1 vom: 14. Juni</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2105-14-192</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.4000053 |