Improving protein fold recognition by random forest
Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting wheth...
Ausführliche Beschreibung
Autor*in: |
Jo, Taeho [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2014 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Jo and Cheng; licensee BioMed Central Ltd. 2014 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC bioinformatics - London : BioMed Central, 2000, 15(2014), Suppl 11 vom: 21. Okt. |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2014 ; number:Suppl 11 ; day:21 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/1471-2105-15-S11-S14 |
---|
Katalog-ID: |
SPR026894513 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026894513 | ||
003 | DE-627 | ||
005 | 20230519083024.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2014 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2105-15-S11-S14 |2 doi | |
035 | |a (DE-627)SPR026894513 | ||
035 | |a (SPR)1471-2105-15-S11-S14-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Jo, Taeho |e verfasserin |4 aut | |
245 | 1 | 0 | |a Improving protein fold recognition by random forest |
264 | 1 | |c 2014 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Jo and Cheng; licensee BioMed Central Ltd. 2014 | ||
520 | |a Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. | ||
650 | 4 | |a Random Forest |7 (dpeaa)DE-He213 | |
650 | 4 | |a Protein Pair |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fold Recognition |7 (dpeaa)DE-He213 | |
650 | 4 | |a Template Protein |7 (dpeaa)DE-He213 | |
650 | 4 | |a Imbalanced Dataset |7 (dpeaa)DE-He213 | |
700 | 1 | |a Cheng, Jianlin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC bioinformatics |d London : BioMed Central, 2000 |g 15(2014), Suppl 11 vom: 21. Okt. |w (DE-627)326644814 |w (DE-600)2041484-5 |x 1471-2105 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2014 |g number:Suppl 11 |g day:21 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2105-15-S11-S14 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2014 |e Suppl 11 |b 21 |c 10 |
author_variant |
t j tj j c jc |
---|---|
matchkey_str |
article:14712105:2014----::mrvnpoenodeontob |
hierarchy_sort_str |
2014 |
publishDate |
2014 |
allfields |
10.1186/1471-2105-15-S11-S14 doi (DE-627)SPR026894513 (SPR)1471-2105-15-S11-S14-e DE-627 ger DE-627 rakwb eng Jo, Taeho verfasserin aut Improving protein fold recognition by random forest 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Jo and Cheng; licensee BioMed Central Ltd. 2014 Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. Random Forest (dpeaa)DE-He213 Protein Pair (dpeaa)DE-He213 Fold Recognition (dpeaa)DE-He213 Template Protein (dpeaa)DE-He213 Imbalanced Dataset (dpeaa)DE-He213 Cheng, Jianlin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 15(2014), Suppl 11 vom: 21. Okt. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:15 year:2014 number:Suppl 11 day:21 month:10 https://dx.doi.org/10.1186/1471-2105-15-S11-S14 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2014 Suppl 11 21 10 |
spelling |
10.1186/1471-2105-15-S11-S14 doi (DE-627)SPR026894513 (SPR)1471-2105-15-S11-S14-e DE-627 ger DE-627 rakwb eng Jo, Taeho verfasserin aut Improving protein fold recognition by random forest 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Jo and Cheng; licensee BioMed Central Ltd. 2014 Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. Random Forest (dpeaa)DE-He213 Protein Pair (dpeaa)DE-He213 Fold Recognition (dpeaa)DE-He213 Template Protein (dpeaa)DE-He213 Imbalanced Dataset (dpeaa)DE-He213 Cheng, Jianlin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 15(2014), Suppl 11 vom: 21. Okt. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:15 year:2014 number:Suppl 11 day:21 month:10 https://dx.doi.org/10.1186/1471-2105-15-S11-S14 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2014 Suppl 11 21 10 |
allfields_unstemmed |
10.1186/1471-2105-15-S11-S14 doi (DE-627)SPR026894513 (SPR)1471-2105-15-S11-S14-e DE-627 ger DE-627 rakwb eng Jo, Taeho verfasserin aut Improving protein fold recognition by random forest 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Jo and Cheng; licensee BioMed Central Ltd. 2014 Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. Random Forest (dpeaa)DE-He213 Protein Pair (dpeaa)DE-He213 Fold Recognition (dpeaa)DE-He213 Template Protein (dpeaa)DE-He213 Imbalanced Dataset (dpeaa)DE-He213 Cheng, Jianlin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 15(2014), Suppl 11 vom: 21. Okt. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:15 year:2014 number:Suppl 11 day:21 month:10 https://dx.doi.org/10.1186/1471-2105-15-S11-S14 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2014 Suppl 11 21 10 |
allfieldsGer |
10.1186/1471-2105-15-S11-S14 doi (DE-627)SPR026894513 (SPR)1471-2105-15-S11-S14-e DE-627 ger DE-627 rakwb eng Jo, Taeho verfasserin aut Improving protein fold recognition by random forest 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Jo and Cheng; licensee BioMed Central Ltd. 2014 Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. Random Forest (dpeaa)DE-He213 Protein Pair (dpeaa)DE-He213 Fold Recognition (dpeaa)DE-He213 Template Protein (dpeaa)DE-He213 Imbalanced Dataset (dpeaa)DE-He213 Cheng, Jianlin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 15(2014), Suppl 11 vom: 21. Okt. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:15 year:2014 number:Suppl 11 day:21 month:10 https://dx.doi.org/10.1186/1471-2105-15-S11-S14 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2014 Suppl 11 21 10 |
allfieldsSound |
10.1186/1471-2105-15-S11-S14 doi (DE-627)SPR026894513 (SPR)1471-2105-15-S11-S14-e DE-627 ger DE-627 rakwb eng Jo, Taeho verfasserin aut Improving protein fold recognition by random forest 2014 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Jo and Cheng; licensee BioMed Central Ltd. 2014 Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. Random Forest (dpeaa)DE-He213 Protein Pair (dpeaa)DE-He213 Fold Recognition (dpeaa)DE-He213 Template Protein (dpeaa)DE-He213 Imbalanced Dataset (dpeaa)DE-He213 Cheng, Jianlin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 15(2014), Suppl 11 vom: 21. Okt. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:15 year:2014 number:Suppl 11 day:21 month:10 https://dx.doi.org/10.1186/1471-2105-15-S11-S14 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2014 Suppl 11 21 10 |
language |
English |
source |
Enthalten in BMC bioinformatics 15(2014), Suppl 11 vom: 21. Okt. volume:15 year:2014 number:Suppl 11 day:21 month:10 |
sourceStr |
Enthalten in BMC bioinformatics 15(2014), Suppl 11 vom: 21. Okt. volume:15 year:2014 number:Suppl 11 day:21 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Random Forest Protein Pair Fold Recognition Template Protein Imbalanced Dataset |
isfreeaccess_bool |
true |
container_title |
BMC bioinformatics |
authorswithroles_txt_mv |
Jo, Taeho @@aut@@ Cheng, Jianlin @@aut@@ |
publishDateDaySort_date |
2014-10-21T00:00:00Z |
hierarchy_top_id |
326644814 |
id |
SPR026894513 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026894513</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519083024.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2105-15-S11-S14</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026894513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2105-15-S11-S14-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jo, Taeho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving protein fold recognition by random forest</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Jo and Cheng; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Forest</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein Pair</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fold Recognition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Template Protein</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imbalanced Dataset</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Jianlin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">15(2014), Suppl 11 vom: 21. Okt.</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:Suppl 11</subfield><subfield code="g">day:21</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2105-15-S11-S14</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2014</subfield><subfield code="e">Suppl 11</subfield><subfield code="b">21</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Jo, Taeho |
spellingShingle |
Jo, Taeho misc Random Forest misc Protein Pair misc Fold Recognition misc Template Protein misc Imbalanced Dataset Improving protein fold recognition by random forest |
authorStr |
Jo, Taeho |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644814 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2105 |
topic_title |
Improving protein fold recognition by random forest Random Forest (dpeaa)DE-He213 Protein Pair (dpeaa)DE-He213 Fold Recognition (dpeaa)DE-He213 Template Protein (dpeaa)DE-He213 Imbalanced Dataset (dpeaa)DE-He213 |
topic |
misc Random Forest misc Protein Pair misc Fold Recognition misc Template Protein misc Imbalanced Dataset |
topic_unstemmed |
misc Random Forest misc Protein Pair misc Fold Recognition misc Template Protein misc Imbalanced Dataset |
topic_browse |
misc Random Forest misc Protein Pair misc Fold Recognition misc Template Protein misc Imbalanced Dataset |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC bioinformatics |
hierarchy_parent_id |
326644814 |
hierarchy_top_title |
BMC bioinformatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644814 (DE-600)2041484-5 |
title |
Improving protein fold recognition by random forest |
ctrlnum |
(DE-627)SPR026894513 (SPR)1471-2105-15-S11-S14-e |
title_full |
Improving protein fold recognition by random forest |
author_sort |
Jo, Taeho |
journal |
BMC bioinformatics |
journalStr |
BMC bioinformatics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2014 |
contenttype_str_mv |
txt |
author_browse |
Jo, Taeho Cheng, Jianlin |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Jo, Taeho |
doi_str_mv |
10.1186/1471-2105-15-S11-S14 |
title_sort |
improving protein fold recognition by random forest |
title_auth |
Improving protein fold recognition by random forest |
abstract |
Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. © Jo and Cheng; licensee BioMed Central Ltd. 2014 |
abstractGer |
Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. © Jo and Cheng; licensee BioMed Central Ltd. 2014 |
abstract_unstemmed |
Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition. © Jo and Cheng; licensee BioMed Central Ltd. 2014 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
Suppl 11 |
title_short |
Improving protein fold recognition by random forest |
url |
https://dx.doi.org/10.1186/1471-2105-15-S11-S14 |
remote_bool |
true |
author2 |
Cheng, Jianlin |
author2Str |
Cheng, Jianlin |
ppnlink |
326644814 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2105-15-S11-S14 |
up_date |
2024-07-03T23:19:07.137Z |
_version_ |
1803601835124064259 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026894513</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519083024.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2014 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2105-15-S11-S14</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026894513</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2105-15-S11-S14-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jo, Taeho</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving protein fold recognition by random forest</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2014</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Jo and Cheng; licensee BioMed Central Ltd. 2014</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Recognizing the correct structural fold among known template protein structures for a target protein (i.e. fold recognition) is essential for template-based protein structure modeling. Since the fold recognition problem can be defined as a binary classification problem of predicting whether or not the unknown fold of a target protein is similar to an already known template protein structure in a library, machine learning methods have been effectively applied to tackle this problem. In our work, we developed RF-Fold that uses random forest - one of the most powerful and scalable machine learning classification methods - to recognize protein folds. Results RF-Fold consists of hundreds of decision trees that can be trained efficiently on very large datasets to make accurate predictions on a highly imbalanced dataset. We evaluated RF-Fold on the standard Lindahl's benchmark dataset comprised of 976 × 975 target-template protein pairs through cross-validation. Compared with 17 different fold recognition methods, the performance of RF-Fold is generally comparable to the best performance in fold recognition of different difficulty ranging from the easiest family level, the medium-hard superfamily level, and to the hardest fold level. Based on the top-one template protein ranked by RF-Fold, the correct recognition rate is 84.5%, 63.4%, and 40.8% at family, superfamily, and fold levels, respectively. Based on the top-five template protein folds ranked by RF-Fold, the correct recognition rate increases to 91.5%, 79.3% and 58.3% at family, superfamily, and fold levels. Conclusions The good performance achieved by the RF-Fold demonstrates the random forest's effectiveness for protein fold recognition.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Random Forest</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein Pair</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fold Recognition</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Template Protein</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Imbalanced Dataset</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Jianlin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">15(2014), Suppl 11 vom: 21. Okt.</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2014</subfield><subfield code="g">number:Suppl 11</subfield><subfield code="g">day:21</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2105-15-S11-S14</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2014</subfield><subfield code="e">Suppl 11</subfield><subfield code="b">21</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.402316 |