Peak shape clustering reveals biological insights
Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched re...
Ausführliche Beschreibung
Autor*in: |
Cremona, Marzia A. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Cremona et al. 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC bioinformatics - London : BioMed Central, 2000, 16(2015), 1 vom: 28. Okt. |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2015 ; number:1 ; day:28 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/s12859-015-0787-6 |
---|
Katalog-ID: |
SPR026899965 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026899965 | ||
003 | DE-627 | ||
005 | 20230519090554.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12859-015-0787-6 |2 doi | |
035 | |a (DE-627)SPR026899965 | ||
035 | |a (SPR)s12859-015-0787-6-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Cremona, Marzia A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Peak shape clustering reveals biological insights |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Cremona et al. 2015 | ||
520 | |a Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression. | ||
650 | 4 | |a ChIP-seq |7 (dpeaa)DE-He213 | |
650 | 4 | |a Transcription regulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a GATA-1 |7 (dpeaa)DE-He213 | |
650 | 4 | |a Peak shape |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sangalli, Laura M. |4 aut | |
700 | 1 | |a Vantini, Simone |4 aut | |
700 | 1 | |a Dellino, Gaetano I. |4 aut | |
700 | 1 | |a Pelicci, Pier Giuseppe |4 aut | |
700 | 1 | |a Secchi, Piercesare |4 aut | |
700 | 1 | |a Riva, Laura |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC bioinformatics |d London : BioMed Central, 2000 |g 16(2015), 1 vom: 28. Okt. |w (DE-627)326644814 |w (DE-600)2041484-5 |x 1471-2105 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2015 |g number:1 |g day:28 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12859-015-0787-6 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2015 |e 1 |b 28 |c 10 |
author_variant |
m a c ma mac l m s lm lms s v sv g i d gi gid p g p pg pgp p s ps l r lr |
---|---|
matchkey_str |
article:14712105:2015----::ekhpcutrnrvasilg |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1186/s12859-015-0787-6 doi (DE-627)SPR026899965 (SPR)s12859-015-0787-6-e DE-627 ger DE-627 rakwb eng Cremona, Marzia A. verfasserin aut Peak shape clustering reveals biological insights 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Cremona et al. 2015 Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression. ChIP-seq (dpeaa)DE-He213 Transcription regulation (dpeaa)DE-He213 GATA-1 (dpeaa)DE-He213 Peak shape (dpeaa)DE-He213 Sangalli, Laura M. aut Vantini, Simone aut Dellino, Gaetano I. aut Pelicci, Pier Giuseppe aut Secchi, Piercesare aut Riva, Laura aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 16(2015), 1 vom: 28. Okt. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:16 year:2015 number:1 day:28 month:10 https://dx.doi.org/10.1186/s12859-015-0787-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 28 10 |
spelling |
10.1186/s12859-015-0787-6 doi (DE-627)SPR026899965 (SPR)s12859-015-0787-6-e DE-627 ger DE-627 rakwb eng Cremona, Marzia A. verfasserin aut Peak shape clustering reveals biological insights 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Cremona et al. 2015 Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression. ChIP-seq (dpeaa)DE-He213 Transcription regulation (dpeaa)DE-He213 GATA-1 (dpeaa)DE-He213 Peak shape (dpeaa)DE-He213 Sangalli, Laura M. aut Vantini, Simone aut Dellino, Gaetano I. aut Pelicci, Pier Giuseppe aut Secchi, Piercesare aut Riva, Laura aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 16(2015), 1 vom: 28. Okt. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:16 year:2015 number:1 day:28 month:10 https://dx.doi.org/10.1186/s12859-015-0787-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 28 10 |
allfields_unstemmed |
10.1186/s12859-015-0787-6 doi (DE-627)SPR026899965 (SPR)s12859-015-0787-6-e DE-627 ger DE-627 rakwb eng Cremona, Marzia A. verfasserin aut Peak shape clustering reveals biological insights 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Cremona et al. 2015 Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression. ChIP-seq (dpeaa)DE-He213 Transcription regulation (dpeaa)DE-He213 GATA-1 (dpeaa)DE-He213 Peak shape (dpeaa)DE-He213 Sangalli, Laura M. aut Vantini, Simone aut Dellino, Gaetano I. aut Pelicci, Pier Giuseppe aut Secchi, Piercesare aut Riva, Laura aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 16(2015), 1 vom: 28. Okt. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:16 year:2015 number:1 day:28 month:10 https://dx.doi.org/10.1186/s12859-015-0787-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 28 10 |
allfieldsGer |
10.1186/s12859-015-0787-6 doi (DE-627)SPR026899965 (SPR)s12859-015-0787-6-e DE-627 ger DE-627 rakwb eng Cremona, Marzia A. verfasserin aut Peak shape clustering reveals biological insights 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Cremona et al. 2015 Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression. ChIP-seq (dpeaa)DE-He213 Transcription regulation (dpeaa)DE-He213 GATA-1 (dpeaa)DE-He213 Peak shape (dpeaa)DE-He213 Sangalli, Laura M. aut Vantini, Simone aut Dellino, Gaetano I. aut Pelicci, Pier Giuseppe aut Secchi, Piercesare aut Riva, Laura aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 16(2015), 1 vom: 28. Okt. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:16 year:2015 number:1 day:28 month:10 https://dx.doi.org/10.1186/s12859-015-0787-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 28 10 |
allfieldsSound |
10.1186/s12859-015-0787-6 doi (DE-627)SPR026899965 (SPR)s12859-015-0787-6-e DE-627 ger DE-627 rakwb eng Cremona, Marzia A. verfasserin aut Peak shape clustering reveals biological insights 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Cremona et al. 2015 Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression. ChIP-seq (dpeaa)DE-He213 Transcription regulation (dpeaa)DE-He213 GATA-1 (dpeaa)DE-He213 Peak shape (dpeaa)DE-He213 Sangalli, Laura M. aut Vantini, Simone aut Dellino, Gaetano I. aut Pelicci, Pier Giuseppe aut Secchi, Piercesare aut Riva, Laura aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 16(2015), 1 vom: 28. Okt. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:16 year:2015 number:1 day:28 month:10 https://dx.doi.org/10.1186/s12859-015-0787-6 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 28 10 |
language |
English |
source |
Enthalten in BMC bioinformatics 16(2015), 1 vom: 28. Okt. volume:16 year:2015 number:1 day:28 month:10 |
sourceStr |
Enthalten in BMC bioinformatics 16(2015), 1 vom: 28. Okt. volume:16 year:2015 number:1 day:28 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
ChIP-seq Transcription regulation GATA-1 Peak shape |
isfreeaccess_bool |
true |
container_title |
BMC bioinformatics |
authorswithroles_txt_mv |
Cremona, Marzia A. @@aut@@ Sangalli, Laura M. @@aut@@ Vantini, Simone @@aut@@ Dellino, Gaetano I. @@aut@@ Pelicci, Pier Giuseppe @@aut@@ Secchi, Piercesare @@aut@@ Riva, Laura @@aut@@ |
publishDateDaySort_date |
2015-10-28T00:00:00Z |
hierarchy_top_id |
326644814 |
id |
SPR026899965 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026899965</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519090554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12859-015-0787-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026899965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12859-015-0787-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cremona, Marzia A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Peak shape clustering reveals biological insights</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Cremona et al. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ChIP-seq</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcription regulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GATA-1</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peak shape</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sangalli, Laura M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vantini, Simone</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dellino, Gaetano I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pelicci, Pier Giuseppe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Secchi, Piercesare</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riva, Laura</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">16(2015), 1 vom: 28. Okt.</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12859-015-0787-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Cremona, Marzia A. |
spellingShingle |
Cremona, Marzia A. misc ChIP-seq misc Transcription regulation misc GATA-1 misc Peak shape Peak shape clustering reveals biological insights |
authorStr |
Cremona, Marzia A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644814 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2105 |
topic_title |
Peak shape clustering reveals biological insights ChIP-seq (dpeaa)DE-He213 Transcription regulation (dpeaa)DE-He213 GATA-1 (dpeaa)DE-He213 Peak shape (dpeaa)DE-He213 |
topic |
misc ChIP-seq misc Transcription regulation misc GATA-1 misc Peak shape |
topic_unstemmed |
misc ChIP-seq misc Transcription regulation misc GATA-1 misc Peak shape |
topic_browse |
misc ChIP-seq misc Transcription regulation misc GATA-1 misc Peak shape |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC bioinformatics |
hierarchy_parent_id |
326644814 |
hierarchy_top_title |
BMC bioinformatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644814 (DE-600)2041484-5 |
title |
Peak shape clustering reveals biological insights |
ctrlnum |
(DE-627)SPR026899965 (SPR)s12859-015-0787-6-e |
title_full |
Peak shape clustering reveals biological insights |
author_sort |
Cremona, Marzia A. |
journal |
BMC bioinformatics |
journalStr |
BMC bioinformatics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Cremona, Marzia A. Sangalli, Laura M. Vantini, Simone Dellino, Gaetano I. Pelicci, Pier Giuseppe Secchi, Piercesare Riva, Laura |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Cremona, Marzia A. |
doi_str_mv |
10.1186/s12859-015-0787-6 |
title_sort |
peak shape clustering reveals biological insights |
title_auth |
Peak shape clustering reveals biological insights |
abstract |
Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression. © Cremona et al. 2015 |
abstractGer |
Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression. © Cremona et al. 2015 |
abstract_unstemmed |
Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression. © Cremona et al. 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Peak shape clustering reveals biological insights |
url |
https://dx.doi.org/10.1186/s12859-015-0787-6 |
remote_bool |
true |
author2 |
Sangalli, Laura M. Vantini, Simone Dellino, Gaetano I. Pelicci, Pier Giuseppe Secchi, Piercesare Riva, Laura |
author2Str |
Sangalli, Laura M. Vantini, Simone Dellino, Gaetano I. Pelicci, Pier Giuseppe Secchi, Piercesare Riva, Laura |
ppnlink |
326644814 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12859-015-0787-6 |
up_date |
2024-07-03T23:20:51.931Z |
_version_ |
1803601944962400257 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026899965</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519090554.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12859-015-0787-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026899965</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12859-015-0787-6-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cremona, Marzia A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Peak shape clustering reveals biological insights</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Cremona et al. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background ChIP-seq experiments are widely used to detect and study DNA-protein interactions, such as transcription factor binding and chromatin modifications. However, downstream analysis of ChIP-seq data is currently restricted to the evaluation of signal intensity and the detection of enriched regions (peaks) in the genome. Other features of peak shape are almost always neglected, despite the remarkable differences shown by ChIP-seq for different proteins, as well as by distinct regions in a single experiment. Results We hypothesize that statistically significant differences in peak shape might have a functional role and a biological meaning. Thus, we design five indices able to summarize peak shapes and we employ multivariate clustering techniques to divide peaks into groups according to both their complexity and the intensity of their coverage function. In addition, our novel analysis pipeline employs a range of statistical and bioinformatics techniques to relate the obtained peak shapes to several independent genomic datasets, including other genome-wide protein-DNA maps and gene expression experiments. To clarify the meaning of peak shape, we apply our methodology to the study of the erythroid transcription factor GATA-1 in K562 cell line and in megakaryocytes. Conclusions Our study demonstrates that ChIP-seq profiles include information regarding the binding of other proteins beside the one used for precipitation. In particular, peak shape provides new insights into cooperative transcriptional regulation and is correlated to gene expression.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ChIP-seq</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcription regulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">GATA-1</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peak shape</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sangalli, Laura M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vantini, Simone</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dellino, Gaetano I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pelicci, Pier Giuseppe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Secchi, Piercesare</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Riva, Laura</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">16(2015), 1 vom: 28. Okt.</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12859-015-0787-6</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.400978 |