Stochastic epigenetic outliers can define field defects in cancer
Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard fea...
Ausführliche Beschreibung
Autor*in: |
Teschendorff, Andrew E. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Teschendorff et al. 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC bioinformatics - London : BioMed Central, 2000, 17(2016), 1 vom: 22. Apr. |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2016 ; number:1 ; day:22 ; month:04 |
Links: |
---|
DOI / URN: |
10.1186/s12859-016-1056-z |
---|
Katalog-ID: |
SPR026903016 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026903016 | ||
003 | DE-627 | ||
005 | 20230519090602.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12859-016-1056-z |2 doi | |
035 | |a (DE-627)SPR026903016 | ||
035 | |a (SPR)s12859-016-1056-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Teschendorff, Andrew E. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stochastic epigenetic outliers can define field defects in cancer |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Teschendorff et al. 2016 | ||
520 | |a Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. Results Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. Conclusions Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity. | ||
650 | 4 | |a DNA methylation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Field defect |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cancer |7 (dpeaa)DE-He213 | |
650 | 4 | |a EWAS |7 (dpeaa)DE-He213 | |
650 | 4 | |a Differential variability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Differential methylation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stochastic |7 (dpeaa)DE-He213 | |
700 | 1 | |a Jones, Allison |4 aut | |
700 | 1 | |a Widschwendter, Martin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC bioinformatics |d London : BioMed Central, 2000 |g 17(2016), 1 vom: 22. Apr. |w (DE-627)326644814 |w (DE-600)2041484-5 |x 1471-2105 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2016 |g number:1 |g day:22 |g month:04 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12859-016-1056-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_370 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2016 |e 1 |b 22 |c 04 |
author_variant |
a e t ae aet a j aj m w mw |
---|---|
matchkey_str |
article:14712105:2016----::tcatcpgntculesadfnfed |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1186/s12859-016-1056-z doi (DE-627)SPR026903016 (SPR)s12859-016-1056-z-e DE-627 ger DE-627 rakwb eng Teschendorff, Andrew E. verfasserin aut Stochastic epigenetic outliers can define field defects in cancer 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Teschendorff et al. 2016 Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. Results Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. Conclusions Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity. DNA methylation (dpeaa)DE-He213 Field defect (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 EWAS (dpeaa)DE-He213 Differential variability (dpeaa)DE-He213 Differential methylation (dpeaa)DE-He213 Stochastic (dpeaa)DE-He213 Jones, Allison aut Widschwendter, Martin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 17(2016), 1 vom: 22. Apr. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:17 year:2016 number:1 day:22 month:04 https://dx.doi.org/10.1186/s12859-016-1056-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2016 1 22 04 |
spelling |
10.1186/s12859-016-1056-z doi (DE-627)SPR026903016 (SPR)s12859-016-1056-z-e DE-627 ger DE-627 rakwb eng Teschendorff, Andrew E. verfasserin aut Stochastic epigenetic outliers can define field defects in cancer 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Teschendorff et al. 2016 Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. Results Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. Conclusions Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity. DNA methylation (dpeaa)DE-He213 Field defect (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 EWAS (dpeaa)DE-He213 Differential variability (dpeaa)DE-He213 Differential methylation (dpeaa)DE-He213 Stochastic (dpeaa)DE-He213 Jones, Allison aut Widschwendter, Martin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 17(2016), 1 vom: 22. Apr. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:17 year:2016 number:1 day:22 month:04 https://dx.doi.org/10.1186/s12859-016-1056-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2016 1 22 04 |
allfields_unstemmed |
10.1186/s12859-016-1056-z doi (DE-627)SPR026903016 (SPR)s12859-016-1056-z-e DE-627 ger DE-627 rakwb eng Teschendorff, Andrew E. verfasserin aut Stochastic epigenetic outliers can define field defects in cancer 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Teschendorff et al. 2016 Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. Results Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. Conclusions Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity. DNA methylation (dpeaa)DE-He213 Field defect (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 EWAS (dpeaa)DE-He213 Differential variability (dpeaa)DE-He213 Differential methylation (dpeaa)DE-He213 Stochastic (dpeaa)DE-He213 Jones, Allison aut Widschwendter, Martin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 17(2016), 1 vom: 22. Apr. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:17 year:2016 number:1 day:22 month:04 https://dx.doi.org/10.1186/s12859-016-1056-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2016 1 22 04 |
allfieldsGer |
10.1186/s12859-016-1056-z doi (DE-627)SPR026903016 (SPR)s12859-016-1056-z-e DE-627 ger DE-627 rakwb eng Teschendorff, Andrew E. verfasserin aut Stochastic epigenetic outliers can define field defects in cancer 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Teschendorff et al. 2016 Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. Results Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. Conclusions Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity. DNA methylation (dpeaa)DE-He213 Field defect (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 EWAS (dpeaa)DE-He213 Differential variability (dpeaa)DE-He213 Differential methylation (dpeaa)DE-He213 Stochastic (dpeaa)DE-He213 Jones, Allison aut Widschwendter, Martin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 17(2016), 1 vom: 22. Apr. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:17 year:2016 number:1 day:22 month:04 https://dx.doi.org/10.1186/s12859-016-1056-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2016 1 22 04 |
allfieldsSound |
10.1186/s12859-016-1056-z doi (DE-627)SPR026903016 (SPR)s12859-016-1056-z-e DE-627 ger DE-627 rakwb eng Teschendorff, Andrew E. verfasserin aut Stochastic epigenetic outliers can define field defects in cancer 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Teschendorff et al. 2016 Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. Results Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. Conclusions Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity. DNA methylation (dpeaa)DE-He213 Field defect (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 EWAS (dpeaa)DE-He213 Differential variability (dpeaa)DE-He213 Differential methylation (dpeaa)DE-He213 Stochastic (dpeaa)DE-He213 Jones, Allison aut Widschwendter, Martin aut Enthalten in BMC bioinformatics London : BioMed Central, 2000 17(2016), 1 vom: 22. Apr. (DE-627)326644814 (DE-600)2041484-5 1471-2105 nnns volume:17 year:2016 number:1 day:22 month:04 https://dx.doi.org/10.1186/s12859-016-1056-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2016 1 22 04 |
language |
English |
source |
Enthalten in BMC bioinformatics 17(2016), 1 vom: 22. Apr. volume:17 year:2016 number:1 day:22 month:04 |
sourceStr |
Enthalten in BMC bioinformatics 17(2016), 1 vom: 22. Apr. volume:17 year:2016 number:1 day:22 month:04 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DNA methylation Field defect Cancer EWAS Differential variability Differential methylation Stochastic |
isfreeaccess_bool |
true |
container_title |
BMC bioinformatics |
authorswithroles_txt_mv |
Teschendorff, Andrew E. @@aut@@ Jones, Allison @@aut@@ Widschwendter, Martin @@aut@@ |
publishDateDaySort_date |
2016-04-22T00:00:00Z |
hierarchy_top_id |
326644814 |
id |
SPR026903016 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026903016</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519090602.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12859-016-1056-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026903016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12859-016-1056-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Teschendorff, Andrew E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic epigenetic outliers can define field defects in cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Teschendorff et al. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. Results Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. Conclusions Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field defect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EWAS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential variability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential methylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, Allison</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Widschwendter, Martin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">17(2016), 1 vom: 22. Apr.</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12859-016-1056-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
author |
Teschendorff, Andrew E. |
spellingShingle |
Teschendorff, Andrew E. misc DNA methylation misc Field defect misc Cancer misc EWAS misc Differential variability misc Differential methylation misc Stochastic Stochastic epigenetic outliers can define field defects in cancer |
authorStr |
Teschendorff, Andrew E. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644814 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2105 |
topic_title |
Stochastic epigenetic outliers can define field defects in cancer DNA methylation (dpeaa)DE-He213 Field defect (dpeaa)DE-He213 Cancer (dpeaa)DE-He213 EWAS (dpeaa)DE-He213 Differential variability (dpeaa)DE-He213 Differential methylation (dpeaa)DE-He213 Stochastic (dpeaa)DE-He213 |
topic |
misc DNA methylation misc Field defect misc Cancer misc EWAS misc Differential variability misc Differential methylation misc Stochastic |
topic_unstemmed |
misc DNA methylation misc Field defect misc Cancer misc EWAS misc Differential variability misc Differential methylation misc Stochastic |
topic_browse |
misc DNA methylation misc Field defect misc Cancer misc EWAS misc Differential variability misc Differential methylation misc Stochastic |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC bioinformatics |
hierarchy_parent_id |
326644814 |
hierarchy_top_title |
BMC bioinformatics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644814 (DE-600)2041484-5 |
title |
Stochastic epigenetic outliers can define field defects in cancer |
ctrlnum |
(DE-627)SPR026903016 (SPR)s12859-016-1056-z-e |
title_full |
Stochastic epigenetic outliers can define field defects in cancer |
author_sort |
Teschendorff, Andrew E. |
journal |
BMC bioinformatics |
journalStr |
BMC bioinformatics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Teschendorff, Andrew E. Jones, Allison Widschwendter, Martin |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Teschendorff, Andrew E. |
doi_str_mv |
10.1186/s12859-016-1056-z |
title_sort |
stochastic epigenetic outliers can define field defects in cancer |
title_auth |
Stochastic epigenetic outliers can define field defects in cancer |
abstract |
Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. Results Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. Conclusions Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity. © Teschendorff et al. 2016 |
abstractGer |
Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. Results Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. Conclusions Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity. © Teschendorff et al. 2016 |
abstract_unstemmed |
Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. Results Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. Conclusions Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity. © Teschendorff et al. 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_370 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Stochastic epigenetic outliers can define field defects in cancer |
url |
https://dx.doi.org/10.1186/s12859-016-1056-z |
remote_bool |
true |
author2 |
Jones, Allison Widschwendter, Martin |
author2Str |
Jones, Allison Widschwendter, Martin |
ppnlink |
326644814 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12859-016-1056-z |
up_date |
2024-07-03T23:21:46.470Z |
_version_ |
1803602002151735296 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026903016</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519090602.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12859-016-1056-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026903016</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12859-016-1056-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Teschendorff, Andrew E.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic epigenetic outliers can define field defects in cancer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Teschendorff et al. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. Results Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. Conclusions Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field defect</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancer</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">EWAS</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential variability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential methylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jones, Allison</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Widschwendter, Martin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC bioinformatics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">17(2016), 1 vom: 22. Apr.</subfield><subfield code="w">(DE-627)326644814</subfield><subfield code="w">(DE-600)2041484-5</subfield><subfield code="x">1471-2105</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12859-016-1056-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_370</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
score |
7.399441 |