Island species radiation and karyotypic stasis in Pachycladonallopolyploids
Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 2...
Ausführliche Beschreibung
Autor*in: |
Mandáková, Terezie [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: BMC evolutionary biology - London : BioMed Central, 2001, 10(2010), 1 vom: 29. Nov. |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2010 ; number:1 ; day:29 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/1471-2148-10-367 |
---|
Katalog-ID: |
SPR026969297 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026969297 | ||
003 | DE-627 | ||
005 | 20230519185730.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2148-10-367 |2 doi | |
035 | |a (DE-627)SPR026969297 | ||
035 | |a (SPR)1471-2148-10-367-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Mandáková, Terezie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Island species radiation and karyotypic stasis in Pachycladonallopolyploids |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species. | ||
650 | 4 | |a Reciprocal Translocation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pericentric Inversion |7 (dpeaa)DE-He213 | |
650 | 4 | |a Paracentric Inversion |7 (dpeaa)DE-He213 | |
650 | 4 | |a Ancestral Karyotype |7 (dpeaa)DE-He213 | |
650 | 4 | |a Comparative Chromosome Painting |7 (dpeaa)DE-He213 | |
700 | 1 | |a Heenan, Peter B |4 aut | |
700 | 1 | |a Lysak, Martin A |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC evolutionary biology |d London : BioMed Central, 2001 |g 10(2010), 1 vom: 29. Nov. |w (DE-627)32664489X |w (DE-600)2041493-6 |x 1471-2148 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2010 |g number:1 |g day:29 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2148-10-367 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2010 |e 1 |b 29 |c 11 |
author_variant |
t m tm p b h pb pbh m a l ma mal |
---|---|
matchkey_str |
article:14712148:2010----::sadpcerdainnkroyisaiipcyl |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1186/1471-2148-10-367 doi (DE-627)SPR026969297 (SPR)1471-2148-10-367-e DE-627 ger DE-627 rakwb eng Mandáková, Terezie verfasserin aut Island species radiation and karyotypic stasis in Pachycladonallopolyploids 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species. Reciprocal Translocation (dpeaa)DE-He213 Pericentric Inversion (dpeaa)DE-He213 Paracentric Inversion (dpeaa)DE-He213 Ancestral Karyotype (dpeaa)DE-He213 Comparative Chromosome Painting (dpeaa)DE-He213 Heenan, Peter B aut Lysak, Martin A aut Enthalten in BMC evolutionary biology London : BioMed Central, 2001 10(2010), 1 vom: 29. Nov. (DE-627)32664489X (DE-600)2041493-6 1471-2148 nnns volume:10 year:2010 number:1 day:29 month:11 https://dx.doi.org/10.1186/1471-2148-10-367 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2010 1 29 11 |
spelling |
10.1186/1471-2148-10-367 doi (DE-627)SPR026969297 (SPR)1471-2148-10-367-e DE-627 ger DE-627 rakwb eng Mandáková, Terezie verfasserin aut Island species radiation and karyotypic stasis in Pachycladonallopolyploids 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species. Reciprocal Translocation (dpeaa)DE-He213 Pericentric Inversion (dpeaa)DE-He213 Paracentric Inversion (dpeaa)DE-He213 Ancestral Karyotype (dpeaa)DE-He213 Comparative Chromosome Painting (dpeaa)DE-He213 Heenan, Peter B aut Lysak, Martin A aut Enthalten in BMC evolutionary biology London : BioMed Central, 2001 10(2010), 1 vom: 29. Nov. (DE-627)32664489X (DE-600)2041493-6 1471-2148 nnns volume:10 year:2010 number:1 day:29 month:11 https://dx.doi.org/10.1186/1471-2148-10-367 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2010 1 29 11 |
allfields_unstemmed |
10.1186/1471-2148-10-367 doi (DE-627)SPR026969297 (SPR)1471-2148-10-367-e DE-627 ger DE-627 rakwb eng Mandáková, Terezie verfasserin aut Island species radiation and karyotypic stasis in Pachycladonallopolyploids 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species. Reciprocal Translocation (dpeaa)DE-He213 Pericentric Inversion (dpeaa)DE-He213 Paracentric Inversion (dpeaa)DE-He213 Ancestral Karyotype (dpeaa)DE-He213 Comparative Chromosome Painting (dpeaa)DE-He213 Heenan, Peter B aut Lysak, Martin A aut Enthalten in BMC evolutionary biology London : BioMed Central, 2001 10(2010), 1 vom: 29. Nov. (DE-627)32664489X (DE-600)2041493-6 1471-2148 nnns volume:10 year:2010 number:1 day:29 month:11 https://dx.doi.org/10.1186/1471-2148-10-367 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2010 1 29 11 |
allfieldsGer |
10.1186/1471-2148-10-367 doi (DE-627)SPR026969297 (SPR)1471-2148-10-367-e DE-627 ger DE-627 rakwb eng Mandáková, Terezie verfasserin aut Island species radiation and karyotypic stasis in Pachycladonallopolyploids 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species. Reciprocal Translocation (dpeaa)DE-He213 Pericentric Inversion (dpeaa)DE-He213 Paracentric Inversion (dpeaa)DE-He213 Ancestral Karyotype (dpeaa)DE-He213 Comparative Chromosome Painting (dpeaa)DE-He213 Heenan, Peter B aut Lysak, Martin A aut Enthalten in BMC evolutionary biology London : BioMed Central, 2001 10(2010), 1 vom: 29. Nov. (DE-627)32664489X (DE-600)2041493-6 1471-2148 nnns volume:10 year:2010 number:1 day:29 month:11 https://dx.doi.org/10.1186/1471-2148-10-367 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2010 1 29 11 |
allfieldsSound |
10.1186/1471-2148-10-367 doi (DE-627)SPR026969297 (SPR)1471-2148-10-367-e DE-627 ger DE-627 rakwb eng Mandáková, Terezie verfasserin aut Island species radiation and karyotypic stasis in Pachycladonallopolyploids 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species. Reciprocal Translocation (dpeaa)DE-He213 Pericentric Inversion (dpeaa)DE-He213 Paracentric Inversion (dpeaa)DE-He213 Ancestral Karyotype (dpeaa)DE-He213 Comparative Chromosome Painting (dpeaa)DE-He213 Heenan, Peter B aut Lysak, Martin A aut Enthalten in BMC evolutionary biology London : BioMed Central, 2001 10(2010), 1 vom: 29. Nov. (DE-627)32664489X (DE-600)2041493-6 1471-2148 nnns volume:10 year:2010 number:1 day:29 month:11 https://dx.doi.org/10.1186/1471-2148-10-367 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2010 1 29 11 |
language |
English |
source |
Enthalten in BMC evolutionary biology 10(2010), 1 vom: 29. Nov. volume:10 year:2010 number:1 day:29 month:11 |
sourceStr |
Enthalten in BMC evolutionary biology 10(2010), 1 vom: 29. Nov. volume:10 year:2010 number:1 day:29 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Reciprocal Translocation Pericentric Inversion Paracentric Inversion Ancestral Karyotype Comparative Chromosome Painting |
isfreeaccess_bool |
false |
container_title |
BMC evolutionary biology |
authorswithroles_txt_mv |
Mandáková, Terezie @@aut@@ Heenan, Peter B @@aut@@ Lysak, Martin A @@aut@@ |
publishDateDaySort_date |
2010-11-29T00:00:00Z |
hierarchy_top_id |
32664489X |
id |
SPR026969297 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026969297</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519185730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2148-10-367</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026969297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2148-10-367-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mandáková, Terezie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Island species radiation and karyotypic stasis in Pachycladonallopolyploids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reciprocal Translocation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pericentric Inversion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Paracentric Inversion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ancestral Karyotype</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Comparative Chromosome Painting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heenan, Peter B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lysak, Martin A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC evolutionary biology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">10(2010), 1 vom: 29. Nov.</subfield><subfield code="w">(DE-627)32664489X</subfield><subfield code="w">(DE-600)2041493-6</subfield><subfield code="x">1471-2148</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2148-10-367</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Mandáková, Terezie |
spellingShingle |
Mandáková, Terezie misc Reciprocal Translocation misc Pericentric Inversion misc Paracentric Inversion misc Ancestral Karyotype misc Comparative Chromosome Painting Island species radiation and karyotypic stasis in Pachycladonallopolyploids |
authorStr |
Mandáková, Terezie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)32664489X |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2148 |
topic_title |
Island species radiation and karyotypic stasis in Pachycladonallopolyploids Reciprocal Translocation (dpeaa)DE-He213 Pericentric Inversion (dpeaa)DE-He213 Paracentric Inversion (dpeaa)DE-He213 Ancestral Karyotype (dpeaa)DE-He213 Comparative Chromosome Painting (dpeaa)DE-He213 |
topic |
misc Reciprocal Translocation misc Pericentric Inversion misc Paracentric Inversion misc Ancestral Karyotype misc Comparative Chromosome Painting |
topic_unstemmed |
misc Reciprocal Translocation misc Pericentric Inversion misc Paracentric Inversion misc Ancestral Karyotype misc Comparative Chromosome Painting |
topic_browse |
misc Reciprocal Translocation misc Pericentric Inversion misc Paracentric Inversion misc Ancestral Karyotype misc Comparative Chromosome Painting |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC evolutionary biology |
hierarchy_parent_id |
32664489X |
hierarchy_top_title |
BMC evolutionary biology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)32664489X (DE-600)2041493-6 |
title |
Island species radiation and karyotypic stasis in Pachycladonallopolyploids |
ctrlnum |
(DE-627)SPR026969297 (SPR)1471-2148-10-367-e |
title_full |
Island species radiation and karyotypic stasis in Pachycladonallopolyploids |
author_sort |
Mandáková, Terezie |
journal |
BMC evolutionary biology |
journalStr |
BMC evolutionary biology |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
author_browse |
Mandáková, Terezie Heenan, Peter B Lysak, Martin A |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Mandáková, Terezie |
doi_str_mv |
10.1186/1471-2148-10-367 |
title_sort |
island species radiation and karyotypic stasis in pachycladonallopolyploids |
title_auth |
Island species radiation and karyotypic stasis in Pachycladonallopolyploids |
abstract |
Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species. © Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species. © Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species. © Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Island species radiation and karyotypic stasis in Pachycladonallopolyploids |
url |
https://dx.doi.org/10.1186/1471-2148-10-367 |
remote_bool |
true |
author2 |
Heenan, Peter B Lysak, Martin A |
author2Str |
Heenan, Peter B Lysak, Martin A |
ppnlink |
32664489X |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2148-10-367 |
up_date |
2024-07-03T23:42:47.432Z |
_version_ |
1803603324366225408 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026969297</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519185730.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2148-10-367</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026969297</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2148-10-367-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mandáková, Terezie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Island species radiation and karyotypic stasis in Pachycladonallopolyploids</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Mandáková et al; licensee BioMed Central Ltd. 2010. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Pachycladon (Brassicaceae, tribe Camelineae) is a monophyletic genus of ten morphologically and ecogeographically differentiated, and presumably allopolyploid species occurring in the South Island of New Zealand and in Tasmania. All Pachycladon species possess ten chromosome pairs (2n = 20). The feasibility of comparative chromosome painting (CCP) in crucifer species allows the origin and genome evolution in this genus to be elucidated. We focus on the origin and genome evolution of Pachycladon as well as on its genomic relationship to other crucifer species, particularly to the allopolyploid Australian Camelineae taxa. As species radiation on islands is usually characterized by chromosomal stasis, i.e. uniformity of chromosome numbers/ploidy levels, the role of major karyotypic reshuffling during the island adaptive and species radiation in Pachycladon is investigated through whole-genome CCP analysis. Results The four analyzed Pachycladon species possess an identical karyotype structure. The consensual ancestral karyotype is most likely common to all Pachycladon species and corroborates the monophyletic origin of the genus evidenced by previous phylogenetic analyses. The ancestral Pachycladon karyotype (n = 10) originated through an allopolyploidization event between two genomes structurally resembling the Ancestral Crucifer Karyotype (ACK, n = 8). The primary allopolyploid (apparently with n = 16) has undergone genome reshuffling by descending dysploidy toward n = 10. Chromosome "fusions" were mediated by inversions, translocations and centromere inactivation/loss. Pachycladon chromosome 3 (PC3) resulted from insertional fusion, described in grasses. The allopolyploid ancestor originated in Australia, from the same or closely related ACK-like parental species as the Australian Camelineae allopolyploids. However, the two whole-genome duplication (WGD) events were independent, with the Pachycladon WGD being significantly younger. The long-distance dispersal of the diploidized Pachycladon ancestor to New Zealand was followed by the Pleistocene species radiation in alpine habitats and characterized by karyotypic stasis. Conclusions Karyotypic stasis in Pachycladon suggests that the insular species radiation in this genus proceeded through homoploid divergence rather than through species-specific gross chromosomal repatterning. The ancestral Pachycladon genome originated in Australia through an allopolyploidization event involving two closely related parental genomes, and spread to New Zealand by a long-distance dispersal. We argue that the chromosome number decrease mediated by inter-genomic reshuffling (diploidization) could provide the Pachycladon allopolyploid founder with an adaptive advantage to colonize montane/alpine habitats. The ancestral Pachycladon karyotype remained stable during the Pleistocene adaptive radiation into ten different species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reciprocal Translocation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pericentric Inversion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Paracentric Inversion</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ancestral Karyotype</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Comparative Chromosome Painting</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heenan, Peter B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lysak, Martin A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC evolutionary biology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">10(2010), 1 vom: 29. Nov.</subfield><subfield code="w">(DE-627)32664489X</subfield><subfield code="w">(DE-600)2041493-6</subfield><subfield code="x">1471-2148</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:29</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2148-10-367</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">29</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.4021826 |