Analysis of gene × environment interactions in sibships using mixed models
Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on...
Ausführliche Beschreibung
Autor*in: |
Barnholtz-Sloan, Jill S [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2003 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: BMC genetics - London : BioMed Central, 2000, 4(2003), Suppl 1 vom: 31. Dez. |
---|---|
Übergeordnetes Werk: |
volume:4 ; year:2003 ; number:Suppl 1 ; day:31 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/1471-2156-4-S1-S18 |
---|
Katalog-ID: |
SPR026999137 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR026999137 | ||
003 | DE-627 | ||
005 | 20230519194232.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2003 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2156-4-S1-S18 |2 doi | |
035 | |a (DE-627)SPR026999137 | ||
035 | |a (SPR)1471-2156-4-S1-S18-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Barnholtz-Sloan, Jill S |e verfasserin |4 aut | |
245 | 1 | 0 | |a Analysis of gene × environment interactions in sibships using mixed models |
264 | 1 | |c 2003 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. Results The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. Conclusion Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures. | ||
650 | 4 | |a Systolic Blood Pressure |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mixed Generalize Linear Model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Environment Model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hypertensive Treatment |7 (dpeaa)DE-He213 | |
650 | 4 | |a High Systolic Blood Pressure |7 (dpeaa)DE-He213 | |
700 | 1 | |a Poisson, Laila M |4 aut | |
700 | 1 | |a Coon, Steven W |4 aut | |
700 | 1 | |a Chase, Gary A |4 aut | |
700 | 1 | |a Rybicki, Benjamin A |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC genetics |d London : BioMed Central, 2000 |g 4(2003), Suppl 1 vom: 31. Dez. |w (DE-627)326644938 |w (DE-600)2041497-3 |x 1471-2156 |7 nnns |
773 | 1 | 8 | |g volume:4 |g year:2003 |g number:Suppl 1 |g day:31 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2156-4-S1-S18 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 4 |j 2003 |e Suppl 1 |b 31 |c 12 |
author_variant |
j s b s jsb jsbs l m p lm lmp s w c sw swc g a c ga gac b a r ba bar |
---|---|
matchkey_str |
article:14712156:2003----::nlssfeeniomnitrcinisbh |
hierarchy_sort_str |
2003 |
publishDate |
2003 |
allfields |
10.1186/1471-2156-4-S1-S18 doi (DE-627)SPR026999137 (SPR)1471-2156-4-S1-S18-e DE-627 ger DE-627 rakwb eng Barnholtz-Sloan, Jill S verfasserin aut Analysis of gene × environment interactions in sibships using mixed models 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. Results The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. Conclusion Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures. Systolic Blood Pressure (dpeaa)DE-He213 Mixed Generalize Linear Model (dpeaa)DE-He213 Environment Model (dpeaa)DE-He213 Hypertensive Treatment (dpeaa)DE-He213 High Systolic Blood Pressure (dpeaa)DE-He213 Poisson, Laila M aut Coon, Steven W aut Chase, Gary A aut Rybicki, Benjamin A aut Enthalten in BMC genetics London : BioMed Central, 2000 4(2003), Suppl 1 vom: 31. Dez. (DE-627)326644938 (DE-600)2041497-3 1471-2156 nnns volume:4 year:2003 number:Suppl 1 day:31 month:12 https://dx.doi.org/10.1186/1471-2156-4-S1-S18 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2003 Suppl 1 31 12 |
spelling |
10.1186/1471-2156-4-S1-S18 doi (DE-627)SPR026999137 (SPR)1471-2156-4-S1-S18-e DE-627 ger DE-627 rakwb eng Barnholtz-Sloan, Jill S verfasserin aut Analysis of gene × environment interactions in sibships using mixed models 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. Results The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. Conclusion Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures. Systolic Blood Pressure (dpeaa)DE-He213 Mixed Generalize Linear Model (dpeaa)DE-He213 Environment Model (dpeaa)DE-He213 Hypertensive Treatment (dpeaa)DE-He213 High Systolic Blood Pressure (dpeaa)DE-He213 Poisson, Laila M aut Coon, Steven W aut Chase, Gary A aut Rybicki, Benjamin A aut Enthalten in BMC genetics London : BioMed Central, 2000 4(2003), Suppl 1 vom: 31. Dez. (DE-627)326644938 (DE-600)2041497-3 1471-2156 nnns volume:4 year:2003 number:Suppl 1 day:31 month:12 https://dx.doi.org/10.1186/1471-2156-4-S1-S18 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2003 Suppl 1 31 12 |
allfields_unstemmed |
10.1186/1471-2156-4-S1-S18 doi (DE-627)SPR026999137 (SPR)1471-2156-4-S1-S18-e DE-627 ger DE-627 rakwb eng Barnholtz-Sloan, Jill S verfasserin aut Analysis of gene × environment interactions in sibships using mixed models 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. Results The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. Conclusion Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures. Systolic Blood Pressure (dpeaa)DE-He213 Mixed Generalize Linear Model (dpeaa)DE-He213 Environment Model (dpeaa)DE-He213 Hypertensive Treatment (dpeaa)DE-He213 High Systolic Blood Pressure (dpeaa)DE-He213 Poisson, Laila M aut Coon, Steven W aut Chase, Gary A aut Rybicki, Benjamin A aut Enthalten in BMC genetics London : BioMed Central, 2000 4(2003), Suppl 1 vom: 31. Dez. (DE-627)326644938 (DE-600)2041497-3 1471-2156 nnns volume:4 year:2003 number:Suppl 1 day:31 month:12 https://dx.doi.org/10.1186/1471-2156-4-S1-S18 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2003 Suppl 1 31 12 |
allfieldsGer |
10.1186/1471-2156-4-S1-S18 doi (DE-627)SPR026999137 (SPR)1471-2156-4-S1-S18-e DE-627 ger DE-627 rakwb eng Barnholtz-Sloan, Jill S verfasserin aut Analysis of gene × environment interactions in sibships using mixed models 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. Results The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. Conclusion Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures. Systolic Blood Pressure (dpeaa)DE-He213 Mixed Generalize Linear Model (dpeaa)DE-He213 Environment Model (dpeaa)DE-He213 Hypertensive Treatment (dpeaa)DE-He213 High Systolic Blood Pressure (dpeaa)DE-He213 Poisson, Laila M aut Coon, Steven W aut Chase, Gary A aut Rybicki, Benjamin A aut Enthalten in BMC genetics London : BioMed Central, 2000 4(2003), Suppl 1 vom: 31. Dez. (DE-627)326644938 (DE-600)2041497-3 1471-2156 nnns volume:4 year:2003 number:Suppl 1 day:31 month:12 https://dx.doi.org/10.1186/1471-2156-4-S1-S18 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2003 Suppl 1 31 12 |
allfieldsSound |
10.1186/1471-2156-4-S1-S18 doi (DE-627)SPR026999137 (SPR)1471-2156-4-S1-S18-e DE-627 ger DE-627 rakwb eng Barnholtz-Sloan, Jill S verfasserin aut Analysis of gene × environment interactions in sibships using mixed models 2003 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. Results The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. Conclusion Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures. Systolic Blood Pressure (dpeaa)DE-He213 Mixed Generalize Linear Model (dpeaa)DE-He213 Environment Model (dpeaa)DE-He213 Hypertensive Treatment (dpeaa)DE-He213 High Systolic Blood Pressure (dpeaa)DE-He213 Poisson, Laila M aut Coon, Steven W aut Chase, Gary A aut Rybicki, Benjamin A aut Enthalten in BMC genetics London : BioMed Central, 2000 4(2003), Suppl 1 vom: 31. Dez. (DE-627)326644938 (DE-600)2041497-3 1471-2156 nnns volume:4 year:2003 number:Suppl 1 day:31 month:12 https://dx.doi.org/10.1186/1471-2156-4-S1-S18 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 4 2003 Suppl 1 31 12 |
language |
English |
source |
Enthalten in BMC genetics 4(2003), Suppl 1 vom: 31. Dez. volume:4 year:2003 number:Suppl 1 day:31 month:12 |
sourceStr |
Enthalten in BMC genetics 4(2003), Suppl 1 vom: 31. Dez. volume:4 year:2003 number:Suppl 1 day:31 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Systolic Blood Pressure Mixed Generalize Linear Model Environment Model Hypertensive Treatment High Systolic Blood Pressure |
isfreeaccess_bool |
false |
container_title |
BMC genetics |
authorswithroles_txt_mv |
Barnholtz-Sloan, Jill S @@aut@@ Poisson, Laila M @@aut@@ Coon, Steven W @@aut@@ Chase, Gary A @@aut@@ Rybicki, Benjamin A @@aut@@ |
publishDateDaySort_date |
2003-12-31T00:00:00Z |
hierarchy_top_id |
326644938 |
id |
SPR026999137 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026999137</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519194232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2003 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2156-4-S1-S18</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026999137</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2156-4-S1-S18-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barnholtz-Sloan, Jill S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of gene × environment interactions in sibships using mixed models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. Results The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. Conclusion Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systolic Blood Pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed Generalize Linear Model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environment Model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypertensive Treatment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Systolic Blood Pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poisson, Laila M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coon, Steven W</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chase, Gary A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rybicki, Benjamin A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genetics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">4(2003), Suppl 1 vom: 31. Dez.</subfield><subfield code="w">(DE-627)326644938</subfield><subfield code="w">(DE-600)2041497-3</subfield><subfield code="x">1471-2156</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2156-4-S1-S18</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2003</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">31</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Barnholtz-Sloan, Jill S |
spellingShingle |
Barnholtz-Sloan, Jill S misc Systolic Blood Pressure misc Mixed Generalize Linear Model misc Environment Model misc Hypertensive Treatment misc High Systolic Blood Pressure Analysis of gene × environment interactions in sibships using mixed models |
authorStr |
Barnholtz-Sloan, Jill S |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644938 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2156 |
topic_title |
Analysis of gene × environment interactions in sibships using mixed models Systolic Blood Pressure (dpeaa)DE-He213 Mixed Generalize Linear Model (dpeaa)DE-He213 Environment Model (dpeaa)DE-He213 Hypertensive Treatment (dpeaa)DE-He213 High Systolic Blood Pressure (dpeaa)DE-He213 |
topic |
misc Systolic Blood Pressure misc Mixed Generalize Linear Model misc Environment Model misc Hypertensive Treatment misc High Systolic Blood Pressure |
topic_unstemmed |
misc Systolic Blood Pressure misc Mixed Generalize Linear Model misc Environment Model misc Hypertensive Treatment misc High Systolic Blood Pressure |
topic_browse |
misc Systolic Blood Pressure misc Mixed Generalize Linear Model misc Environment Model misc Hypertensive Treatment misc High Systolic Blood Pressure |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC genetics |
hierarchy_parent_id |
326644938 |
hierarchy_top_title |
BMC genetics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)326644938 (DE-600)2041497-3 |
title |
Analysis of gene × environment interactions in sibships using mixed models |
ctrlnum |
(DE-627)SPR026999137 (SPR)1471-2156-4-S1-S18-e |
title_full |
Analysis of gene × environment interactions in sibships using mixed models |
author_sort |
Barnholtz-Sloan, Jill S |
journal |
BMC genetics |
journalStr |
BMC genetics |
lang_code |
eng |
isOA_bool |
false |
recordtype |
marc |
publishDateSort |
2003 |
contenttype_str_mv |
txt |
author_browse |
Barnholtz-Sloan, Jill S Poisson, Laila M Coon, Steven W Chase, Gary A Rybicki, Benjamin A |
container_volume |
4 |
format_se |
Elektronische Aufsätze |
author-letter |
Barnholtz-Sloan, Jill S |
doi_str_mv |
10.1186/1471-2156-4-S1-S18 |
title_sort |
analysis of gene × environment interactions in sibships using mixed models |
title_auth |
Analysis of gene × environment interactions in sibships using mixed models |
abstract |
Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. Results The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. Conclusion Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures. © Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. Results The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. Conclusion Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures. © Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. Results The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. Conclusion Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures. © Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
Suppl 1 |
title_short |
Analysis of gene × environment interactions in sibships using mixed models |
url |
https://dx.doi.org/10.1186/1471-2156-4-S1-S18 |
remote_bool |
true |
author2 |
Poisson, Laila M Coon, Steven W Chase, Gary A Rybicki, Benjamin A |
author2Str |
Poisson, Laila M Coon, Steven W Chase, Gary A Rybicki, Benjamin A |
ppnlink |
326644938 |
mediatype_str_mv |
c |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2156-4-S1-S18 |
up_date |
2024-07-03T23:51:56.763Z |
_version_ |
1803603900381528064 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR026999137</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519194232.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2003 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2156-4-S1-S18</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR026999137</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2156-4-S1-S18-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barnholtz-Sloan, Jill S</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of gene × environment interactions in sibships using mixed models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2003</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Barnholtz-Sloan et al; licensee BioMed Central Ltd 2003. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Gene × environment models are widely used to assess genetic and environmental risks and their association with a phenotype of interest for many complex diseases. Mixed generalized linear models were used to assess gene × environment interactions with respect to systolic blood pressure on sibships adjusting for repeated measures and hierarchical nesting structures. A data set containing 410 sibships from the Framingham Heart Study offspring cohort (part of the Genetic Analysis Workshop 13 data) was used for all analyses. Three mixed gene × environment models, all adjusting for repeated measurement and varying levels of nesting, were compared for precision of estimates: 1) all sibships with adjustment for two levels of nesting (sibs within sibships and sibs within pedigrees), 2) all sibships with adjustment for one level of nesting (sibs within sibships), and 3) 100 data sets containing random draws of one sibship per extended pedigree adjusting for one level of nesting. Results The main effects were: gender, baseline age, body mass index (BMI), hypertensive treatment, cigarettes per day, grams of alcohol per day, and marker GATA48G07A. The interaction fixed effects were: baseline age by gender, baseline age by cigarettes per day, baseline age by hypertensive treatment, baseline age by BMI, hypertensive treatment by BMI, and baseline age by marker GATA48G07A. The estimates for all three nesting techniques were not widely discrepant, but precision of estimates and determination of significant effects did change with the change in adjustment for nesting. Conclusion Our results show the importance of the adjustment for all levels of hierarchical nesting of sibs in the presence of repeated measures.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systolic Blood Pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed Generalize Linear Model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Environment Model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hypertensive Treatment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">High Systolic Blood Pressure</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poisson, Laila M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Coon, Steven W</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chase, Gary A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rybicki, Benjamin A</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genetics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">4(2003), Suppl 1 vom: 31. Dez.</subfield><subfield code="w">(DE-627)326644938</subfield><subfield code="w">(DE-600)2041497-3</subfield><subfield code="x">1471-2156</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:4</subfield><subfield code="g">year:2003</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2156-4-S1-S18</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">4</subfield><subfield code="j">2003</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">31</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.401078 |