Characterization of 954 bovine full-CDS cDNA sequences
Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produce...
Ausführliche Beschreibung
Autor*in: |
Harhay, Gregory P [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2005 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: BMC genomics - London : BioMed Central, 2000, 6(2005), 1 vom: 23. Nov. |
---|---|
Übergeordnetes Werk: |
volume:6 ; year:2005 ; number:1 ; day:23 ; month:11 |
Links: |
---|
DOI / URN: |
10.1186/1471-2164-6-166 |
---|
Katalog-ID: |
SPR02702427X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR02702427X | ||
003 | DE-627 | ||
005 | 20230520011850.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2005 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2164-6-166 |2 doi | |
035 | |a (DE-627)SPR02702427X | ||
035 | |a (SPR)1471-2164-6-166-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Harhay, Gregory P |e verfasserin |4 aut | |
245 | 1 | 0 | |a Characterization of 954 bovine full-CDS cDNA sequences |
264 | 1 | |c 2005 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism's genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing. Results The predicted bovine protein lengths, 5' UTR lengths, and Kozak consensus sequences from 954 b ovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts. Conclusion In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species. | ||
650 | 4 | |a Bovine Genome |7 (dpeaa)DE-He213 | |
650 | 4 | |a Human RefSeq |7 (dpeaa)DE-He213 | |
650 | 4 | |a Kozak Consensus Sequence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bovine Genome Sequencing |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bovine Genome Assembly |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sonstegard, Tad S |4 aut | |
700 | 1 | |a Keele, John W |4 aut | |
700 | 1 | |a Heaton, Michael P |4 aut | |
700 | 1 | |a Clawson, Michael L |4 aut | |
700 | 1 | |a Snelling, Warren M |4 aut | |
700 | 1 | |a Wiedmann, Ralph T |4 aut | |
700 | 1 | |a Van Tassell, Curt P |4 aut | |
700 | 1 | |a Smith, Timothy PL |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC genomics |d London : BioMed Central, 2000 |g 6(2005), 1 vom: 23. Nov. |w (DE-627)326644954 |w (DE-600)2041499-7 |x 1471-2164 |7 nnns |
773 | 1 | 8 | |g volume:6 |g year:2005 |g number:1 |g day:23 |g month:11 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2164-6-166 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 6 |j 2005 |e 1 |b 23 |c 11 |
author_variant |
g p h gp gph t s s ts tss j w k jw jwk m p h mp mph m l c ml mlc w m s wm wms r t w rt rtw t c p v tcp tcpv t p s tp tps |
---|---|
matchkey_str |
article:14712164:2005----::hrceiainf5bvnflc |
hierarchy_sort_str |
2005 |
publishDate |
2005 |
allfields |
10.1186/1471-2164-6-166 doi (DE-627)SPR02702427X (SPR)1471-2164-6-166-e DE-627 ger DE-627 rakwb eng Harhay, Gregory P verfasserin aut Characterization of 954 bovine full-CDS cDNA sequences 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism's genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing. Results The predicted bovine protein lengths, 5' UTR lengths, and Kozak consensus sequences from 954 b ovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts. Conclusion In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species. Bovine Genome (dpeaa)DE-He213 Human RefSeq (dpeaa)DE-He213 Kozak Consensus Sequence (dpeaa)DE-He213 Bovine Genome Sequencing (dpeaa)DE-He213 Bovine Genome Assembly (dpeaa)DE-He213 Sonstegard, Tad S aut Keele, John W aut Heaton, Michael P aut Clawson, Michael L aut Snelling, Warren M aut Wiedmann, Ralph T aut Van Tassell, Curt P aut Smith, Timothy PL aut Enthalten in BMC genomics London : BioMed Central, 2000 6(2005), 1 vom: 23. Nov. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:6 year:2005 number:1 day:23 month:11 https://dx.doi.org/10.1186/1471-2164-6-166 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2005 1 23 11 |
spelling |
10.1186/1471-2164-6-166 doi (DE-627)SPR02702427X (SPR)1471-2164-6-166-e DE-627 ger DE-627 rakwb eng Harhay, Gregory P verfasserin aut Characterization of 954 bovine full-CDS cDNA sequences 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism's genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing. Results The predicted bovine protein lengths, 5' UTR lengths, and Kozak consensus sequences from 954 b ovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts. Conclusion In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species. Bovine Genome (dpeaa)DE-He213 Human RefSeq (dpeaa)DE-He213 Kozak Consensus Sequence (dpeaa)DE-He213 Bovine Genome Sequencing (dpeaa)DE-He213 Bovine Genome Assembly (dpeaa)DE-He213 Sonstegard, Tad S aut Keele, John W aut Heaton, Michael P aut Clawson, Michael L aut Snelling, Warren M aut Wiedmann, Ralph T aut Van Tassell, Curt P aut Smith, Timothy PL aut Enthalten in BMC genomics London : BioMed Central, 2000 6(2005), 1 vom: 23. Nov. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:6 year:2005 number:1 day:23 month:11 https://dx.doi.org/10.1186/1471-2164-6-166 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2005 1 23 11 |
allfields_unstemmed |
10.1186/1471-2164-6-166 doi (DE-627)SPR02702427X (SPR)1471-2164-6-166-e DE-627 ger DE-627 rakwb eng Harhay, Gregory P verfasserin aut Characterization of 954 bovine full-CDS cDNA sequences 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism's genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing. Results The predicted bovine protein lengths, 5' UTR lengths, and Kozak consensus sequences from 954 b ovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts. Conclusion In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species. Bovine Genome (dpeaa)DE-He213 Human RefSeq (dpeaa)DE-He213 Kozak Consensus Sequence (dpeaa)DE-He213 Bovine Genome Sequencing (dpeaa)DE-He213 Bovine Genome Assembly (dpeaa)DE-He213 Sonstegard, Tad S aut Keele, John W aut Heaton, Michael P aut Clawson, Michael L aut Snelling, Warren M aut Wiedmann, Ralph T aut Van Tassell, Curt P aut Smith, Timothy PL aut Enthalten in BMC genomics London : BioMed Central, 2000 6(2005), 1 vom: 23. Nov. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:6 year:2005 number:1 day:23 month:11 https://dx.doi.org/10.1186/1471-2164-6-166 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2005 1 23 11 |
allfieldsGer |
10.1186/1471-2164-6-166 doi (DE-627)SPR02702427X (SPR)1471-2164-6-166-e DE-627 ger DE-627 rakwb eng Harhay, Gregory P verfasserin aut Characterization of 954 bovine full-CDS cDNA sequences 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism's genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing. Results The predicted bovine protein lengths, 5' UTR lengths, and Kozak consensus sequences from 954 b ovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts. Conclusion In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species. Bovine Genome (dpeaa)DE-He213 Human RefSeq (dpeaa)DE-He213 Kozak Consensus Sequence (dpeaa)DE-He213 Bovine Genome Sequencing (dpeaa)DE-He213 Bovine Genome Assembly (dpeaa)DE-He213 Sonstegard, Tad S aut Keele, John W aut Heaton, Michael P aut Clawson, Michael L aut Snelling, Warren M aut Wiedmann, Ralph T aut Van Tassell, Curt P aut Smith, Timothy PL aut Enthalten in BMC genomics London : BioMed Central, 2000 6(2005), 1 vom: 23. Nov. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:6 year:2005 number:1 day:23 month:11 https://dx.doi.org/10.1186/1471-2164-6-166 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2005 1 23 11 |
allfieldsSound |
10.1186/1471-2164-6-166 doi (DE-627)SPR02702427X (SPR)1471-2164-6-166-e DE-627 ger DE-627 rakwb eng Harhay, Gregory P verfasserin aut Characterization of 954 bovine full-CDS cDNA sequences 2005 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism's genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing. Results The predicted bovine protein lengths, 5' UTR lengths, and Kozak consensus sequences from 954 b ovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts. Conclusion In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species. Bovine Genome (dpeaa)DE-He213 Human RefSeq (dpeaa)DE-He213 Kozak Consensus Sequence (dpeaa)DE-He213 Bovine Genome Sequencing (dpeaa)DE-He213 Bovine Genome Assembly (dpeaa)DE-He213 Sonstegard, Tad S aut Keele, John W aut Heaton, Michael P aut Clawson, Michael L aut Snelling, Warren M aut Wiedmann, Ralph T aut Van Tassell, Curt P aut Smith, Timothy PL aut Enthalten in BMC genomics London : BioMed Central, 2000 6(2005), 1 vom: 23. Nov. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:6 year:2005 number:1 day:23 month:11 https://dx.doi.org/10.1186/1471-2164-6-166 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 6 2005 1 23 11 |
language |
English |
source |
Enthalten in BMC genomics 6(2005), 1 vom: 23. Nov. volume:6 year:2005 number:1 day:23 month:11 |
sourceStr |
Enthalten in BMC genomics 6(2005), 1 vom: 23. Nov. volume:6 year:2005 number:1 day:23 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bovine Genome Human RefSeq Kozak Consensus Sequence Bovine Genome Sequencing Bovine Genome Assembly |
isfreeaccess_bool |
true |
container_title |
BMC genomics |
authorswithroles_txt_mv |
Harhay, Gregory P @@aut@@ Sonstegard, Tad S @@aut@@ Keele, John W @@aut@@ Heaton, Michael P @@aut@@ Clawson, Michael L @@aut@@ Snelling, Warren M @@aut@@ Wiedmann, Ralph T @@aut@@ Van Tassell, Curt P @@aut@@ Smith, Timothy PL @@aut@@ |
publishDateDaySort_date |
2005-11-23T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
SPR02702427X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02702427X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520011850.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2005 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-6-166</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02702427X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2164-6-166-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harhay, Gregory P</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of 954 bovine full-CDS cDNA sequences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism's genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing. Results The predicted bovine protein lengths, 5' UTR lengths, and Kozak consensus sequences from 954 b ovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts. Conclusion In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bovine Genome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human RefSeq</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kozak Consensus Sequence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bovine Genome Sequencing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bovine Genome Assembly</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sonstegard, Tad S</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keele, John W</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heaton, Michael P</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clawson, Michael L</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Snelling, Warren M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiedmann, Ralph T</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Tassell, Curt P</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Timothy PL</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">6(2005), 1 vom: 23. Nov.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:1</subfield><subfield code="g">day:23</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2164-6-166</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2005</subfield><subfield code="e">1</subfield><subfield code="b">23</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Harhay, Gregory P |
spellingShingle |
Harhay, Gregory P misc Bovine Genome misc Human RefSeq misc Kozak Consensus Sequence misc Bovine Genome Sequencing misc Bovine Genome Assembly Characterization of 954 bovine full-CDS cDNA sequences |
authorStr |
Harhay, Gregory P |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2164 |
topic_title |
Characterization of 954 bovine full-CDS cDNA sequences Bovine Genome (dpeaa)DE-He213 Human RefSeq (dpeaa)DE-He213 Kozak Consensus Sequence (dpeaa)DE-He213 Bovine Genome Sequencing (dpeaa)DE-He213 Bovine Genome Assembly (dpeaa)DE-He213 |
topic |
misc Bovine Genome misc Human RefSeq misc Kozak Consensus Sequence misc Bovine Genome Sequencing misc Bovine Genome Assembly |
topic_unstemmed |
misc Bovine Genome misc Human RefSeq misc Kozak Consensus Sequence misc Bovine Genome Sequencing misc Bovine Genome Assembly |
topic_browse |
misc Bovine Genome misc Human RefSeq misc Kozak Consensus Sequence misc Bovine Genome Sequencing misc Bovine Genome Assembly |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
Characterization of 954 bovine full-CDS cDNA sequences |
ctrlnum |
(DE-627)SPR02702427X (SPR)1471-2164-6-166-e |
title_full |
Characterization of 954 bovine full-CDS cDNA sequences |
author_sort |
Harhay, Gregory P |
journal |
BMC genomics |
journalStr |
BMC genomics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2005 |
contenttype_str_mv |
txt |
author_browse |
Harhay, Gregory P Sonstegard, Tad S Keele, John W Heaton, Michael P Clawson, Michael L Snelling, Warren M Wiedmann, Ralph T Van Tassell, Curt P Smith, Timothy PL |
container_volume |
6 |
format_se |
Elektronische Aufsätze |
author-letter |
Harhay, Gregory P |
doi_str_mv |
10.1186/1471-2164-6-166 |
title_sort |
characterization of 954 bovine full-cds cdna sequences |
title_auth |
Characterization of 954 bovine full-CDS cDNA sequences |
abstract |
Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism's genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing. Results The predicted bovine protein lengths, 5' UTR lengths, and Kozak consensus sequences from 954 b ovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts. Conclusion In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species. © Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism's genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing. Results The predicted bovine protein lengths, 5' UTR lengths, and Kozak consensus sequences from 954 b ovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts. Conclusion In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species. © Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism's genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing. Results The predicted bovine protein lengths, 5' UTR lengths, and Kozak consensus sequences from 954 b ovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts. Conclusion In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species. © Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Characterization of 954 bovine full-CDS cDNA sequences |
url |
https://dx.doi.org/10.1186/1471-2164-6-166 |
remote_bool |
true |
author2 |
Sonstegard, Tad S Keele, John W Heaton, Michael P Clawson, Michael L Snelling, Warren M Wiedmann, Ralph T Van Tassell, Curt P Smith, Timothy PL |
author2Str |
Sonstegard, Tad S Keele, John W Heaton, Michael P Clawson, Michael L Snelling, Warren M Wiedmann, Ralph T Van Tassell, Curt P Smith, Timothy PL |
ppnlink |
326644954 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2164-6-166 |
up_date |
2024-07-03T23:59:17.777Z |
_version_ |
1803604362823467008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR02702427X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520011850.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2005 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-6-166</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR02702427X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2164-6-166-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Harhay, Gregory P</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Characterization of 954 bovine full-CDS cDNA sequences</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2005</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Harhay et al; licensee BioMed Central Ltd. 2005. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Genome assemblies rely on the existence of transcript sequence to stitch together contigs, verify assembly of whole genome shotgun reads, and annotate genes. Functional genomics studies also rely on transcript sequence to create expression microarrays or interpret digital tag data produced by methods such as Serial Analysis of Gene Expression (SAGE). Transcript sequence can be predicted based on reconstruction from overlapping expressed sequence tags (EST) that are obtained by single-pass sequencing of random cDNA clones, but these reconstructions are prone to errors caused by alternative splice forms, transcripts from gene families with related sequences, and expressed pseudogenes. These errors confound genome assembly and annotation. The most useful transcript sequences are derived by complete insert sequencing of clones containing the entire length, or at least the full protein coding sequence (CDS) portion, of the source mRNA. While the bovine genome sequencing initiative is nearing completion, there is currently a paucity of bovine full-CDS mRNA and protein sequence data to support bovine genome assembly and functional genomics studies. Consequently, the production of high-quality bovine full-CDS cDNA sequences will enhance the bovine genome assembly and functional studies of bovine genes and gene products. The goal of this investigation was to identify and characterize the full-CDS sequences of bovine transcripts from clones identified in non-full-length enriched cDNA libraries. In contrast to several recent full-length cDNA investigations, these full-CDS cDNAs were selected, sequenced, and annotated without the benefit of the target organism's genomic sequence, by using comparison of bovine EST sequence to existing human mRNA to identify likely full-CDS clones for full-length insert cDNA (FLIC) sequencing. Results The predicted bovine protein lengths, 5' UTR lengths, and Kozak consensus sequences from 954 b ovine FLIC sequences (bFLICs; average length 1713 nt, representing 762 distinct loci) are all consistent with previously sequenced mammalian full-length transcripts. Conclusion In most cases, the bFLICs span the entire CDS of the genes, providing the basis for creating predicted bovine protein sequences to support proteomics and comparative evolutionary research as well as functional genomics and genome annotation. The results demonstrate the utility of the comparative approach in obtaining predicted protein sequences in other species.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bovine Genome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human RefSeq</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kozak Consensus Sequence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bovine Genome Sequencing</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bovine Genome Assembly</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sonstegard, Tad S</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Keele, John W</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Heaton, Michael P</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clawson, Michael L</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Snelling, Warren M</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wiedmann, Ralph T</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van Tassell, Curt P</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Timothy PL</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">6(2005), 1 vom: 23. Nov.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:6</subfield><subfield code="g">year:2005</subfield><subfield code="g">number:1</subfield><subfield code="g">day:23</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2164-6-166</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">6</subfield><subfield code="j">2005</subfield><subfield code="e">1</subfield><subfield code="b">23</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.400728 |