The theory of discovering rare variants via DNA sequencing
Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer s...
Ausführliche Beschreibung
Autor*in: |
Wendl, Michael C [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Wendl and Wilson; licensee BioMed Central Ltd. 2009 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC genomics - London : BioMed Central, 2000, 10(2009), 1 vom: 20. Okt. |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2009 ; number:1 ; day:20 ; month:10 |
Links: |
---|
DOI / URN: |
10.1186/1471-2164-10-485 |
---|
Katalog-ID: |
SPR027046516 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027046516 | ||
003 | DE-627 | ||
005 | 20230519225912.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2009 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2164-10-485 |2 doi | |
035 | |a (DE-627)SPR027046516 | ||
035 | |a (SPR)1471-2164-10-485-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wendl, Michael C |e verfasserin |4 aut | |
245 | 1 | 4 | |a The theory of discovering rare variants via DNA sequencing |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Wendl and Wilson; licensee BioMed Central Ltd. 2009 | ||
520 | |a Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. Results We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. Conclusion The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future. | ||
650 | 4 | |a Rare Variant |7 (dpeaa)DE-He213 | |
650 | 4 | |a Rare Allele |7 (dpeaa)DE-He213 | |
650 | 4 | |a Variation Project |7 (dpeaa)DE-He213 | |
650 | 4 | |a Coverage Probability |7 (dpeaa)DE-He213 | |
650 | 4 | |a Optimization Principle |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wilson, Richard K |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC genomics |d London : BioMed Central, 2000 |g 10(2009), 1 vom: 20. Okt. |w (DE-627)326644954 |w (DE-600)2041499-7 |x 1471-2164 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2009 |g number:1 |g day:20 |g month:10 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2164-10-485 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2009 |e 1 |b 20 |c 10 |
author_variant |
m c w mc mcw r k w rk rkw |
---|---|
matchkey_str |
article:14712164:2009----::hterodsoeigaeainsi |
hierarchy_sort_str |
2009 |
publishDate |
2009 |
allfields |
10.1186/1471-2164-10-485 doi (DE-627)SPR027046516 (SPR)1471-2164-10-485-e DE-627 ger DE-627 rakwb eng Wendl, Michael C verfasserin aut The theory of discovering rare variants via DNA sequencing 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Wendl and Wilson; licensee BioMed Central Ltd. 2009 Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. Results We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. Conclusion The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future. Rare Variant (dpeaa)DE-He213 Rare Allele (dpeaa)DE-He213 Variation Project (dpeaa)DE-He213 Coverage Probability (dpeaa)DE-He213 Optimization Principle (dpeaa)DE-He213 Wilson, Richard K aut Enthalten in BMC genomics London : BioMed Central, 2000 10(2009), 1 vom: 20. Okt. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:10 year:2009 number:1 day:20 month:10 https://dx.doi.org/10.1186/1471-2164-10-485 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2009 1 20 10 |
spelling |
10.1186/1471-2164-10-485 doi (DE-627)SPR027046516 (SPR)1471-2164-10-485-e DE-627 ger DE-627 rakwb eng Wendl, Michael C verfasserin aut The theory of discovering rare variants via DNA sequencing 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Wendl and Wilson; licensee BioMed Central Ltd. 2009 Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. Results We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. Conclusion The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future. Rare Variant (dpeaa)DE-He213 Rare Allele (dpeaa)DE-He213 Variation Project (dpeaa)DE-He213 Coverage Probability (dpeaa)DE-He213 Optimization Principle (dpeaa)DE-He213 Wilson, Richard K aut Enthalten in BMC genomics London : BioMed Central, 2000 10(2009), 1 vom: 20. Okt. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:10 year:2009 number:1 day:20 month:10 https://dx.doi.org/10.1186/1471-2164-10-485 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2009 1 20 10 |
allfields_unstemmed |
10.1186/1471-2164-10-485 doi (DE-627)SPR027046516 (SPR)1471-2164-10-485-e DE-627 ger DE-627 rakwb eng Wendl, Michael C verfasserin aut The theory of discovering rare variants via DNA sequencing 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Wendl and Wilson; licensee BioMed Central Ltd. 2009 Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. Results We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. Conclusion The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future. Rare Variant (dpeaa)DE-He213 Rare Allele (dpeaa)DE-He213 Variation Project (dpeaa)DE-He213 Coverage Probability (dpeaa)DE-He213 Optimization Principle (dpeaa)DE-He213 Wilson, Richard K aut Enthalten in BMC genomics London : BioMed Central, 2000 10(2009), 1 vom: 20. Okt. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:10 year:2009 number:1 day:20 month:10 https://dx.doi.org/10.1186/1471-2164-10-485 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2009 1 20 10 |
allfieldsGer |
10.1186/1471-2164-10-485 doi (DE-627)SPR027046516 (SPR)1471-2164-10-485-e DE-627 ger DE-627 rakwb eng Wendl, Michael C verfasserin aut The theory of discovering rare variants via DNA sequencing 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Wendl and Wilson; licensee BioMed Central Ltd. 2009 Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. Results We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. Conclusion The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future. Rare Variant (dpeaa)DE-He213 Rare Allele (dpeaa)DE-He213 Variation Project (dpeaa)DE-He213 Coverage Probability (dpeaa)DE-He213 Optimization Principle (dpeaa)DE-He213 Wilson, Richard K aut Enthalten in BMC genomics London : BioMed Central, 2000 10(2009), 1 vom: 20. Okt. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:10 year:2009 number:1 day:20 month:10 https://dx.doi.org/10.1186/1471-2164-10-485 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2009 1 20 10 |
allfieldsSound |
10.1186/1471-2164-10-485 doi (DE-627)SPR027046516 (SPR)1471-2164-10-485-e DE-627 ger DE-627 rakwb eng Wendl, Michael C verfasserin aut The theory of discovering rare variants via DNA sequencing 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Wendl and Wilson; licensee BioMed Central Ltd. 2009 Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. Results We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. Conclusion The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future. Rare Variant (dpeaa)DE-He213 Rare Allele (dpeaa)DE-He213 Variation Project (dpeaa)DE-He213 Coverage Probability (dpeaa)DE-He213 Optimization Principle (dpeaa)DE-He213 Wilson, Richard K aut Enthalten in BMC genomics London : BioMed Central, 2000 10(2009), 1 vom: 20. Okt. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:10 year:2009 number:1 day:20 month:10 https://dx.doi.org/10.1186/1471-2164-10-485 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2009 1 20 10 |
language |
English |
source |
Enthalten in BMC genomics 10(2009), 1 vom: 20. Okt. volume:10 year:2009 number:1 day:20 month:10 |
sourceStr |
Enthalten in BMC genomics 10(2009), 1 vom: 20. Okt. volume:10 year:2009 number:1 day:20 month:10 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Rare Variant Rare Allele Variation Project Coverage Probability Optimization Principle |
isfreeaccess_bool |
true |
container_title |
BMC genomics |
authorswithroles_txt_mv |
Wendl, Michael C @@aut@@ Wilson, Richard K @@aut@@ |
publishDateDaySort_date |
2009-10-20T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
SPR027046516 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027046516</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519225912.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-10-485</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027046516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2164-10-485-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wendl, Michael C</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The theory of discovering rare variants via DNA sequencing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Wendl and Wilson; licensee BioMed Central Ltd. 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. Results We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. Conclusion The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rare Variant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rare Allele</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variation Project</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coverage Probability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization Principle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wilson, Richard K</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">10(2009), 1 vom: 20. Okt.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2164-10-485</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
author |
Wendl, Michael C |
spellingShingle |
Wendl, Michael C misc Rare Variant misc Rare Allele misc Variation Project misc Coverage Probability misc Optimization Principle The theory of discovering rare variants via DNA sequencing |
authorStr |
Wendl, Michael C |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2164 |
topic_title |
The theory of discovering rare variants via DNA sequencing Rare Variant (dpeaa)DE-He213 Rare Allele (dpeaa)DE-He213 Variation Project (dpeaa)DE-He213 Coverage Probability (dpeaa)DE-He213 Optimization Principle (dpeaa)DE-He213 |
topic |
misc Rare Variant misc Rare Allele misc Variation Project misc Coverage Probability misc Optimization Principle |
topic_unstemmed |
misc Rare Variant misc Rare Allele misc Variation Project misc Coverage Probability misc Optimization Principle |
topic_browse |
misc Rare Variant misc Rare Allele misc Variation Project misc Coverage Probability misc Optimization Principle |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
The theory of discovering rare variants via DNA sequencing |
ctrlnum |
(DE-627)SPR027046516 (SPR)1471-2164-10-485-e |
title_full |
The theory of discovering rare variants via DNA sequencing |
author_sort |
Wendl, Michael C |
journal |
BMC genomics |
journalStr |
BMC genomics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
author_browse |
Wendl, Michael C Wilson, Richard K |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Wendl, Michael C |
doi_str_mv |
10.1186/1471-2164-10-485 |
title_sort |
theory of discovering rare variants via dna sequencing |
title_auth |
The theory of discovering rare variants via DNA sequencing |
abstract |
Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. Results We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. Conclusion The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future. © Wendl and Wilson; licensee BioMed Central Ltd. 2009 |
abstractGer |
Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. Results We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. Conclusion The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future. © Wendl and Wilson; licensee BioMed Central Ltd. 2009 |
abstract_unstemmed |
Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. Results We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. Conclusion The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future. © Wendl and Wilson; licensee BioMed Central Ltd. 2009 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The theory of discovering rare variants via DNA sequencing |
url |
https://dx.doi.org/10.1186/1471-2164-10-485 |
remote_bool |
true |
author2 |
Wilson, Richard K |
author2Str |
Wilson, Richard K |
ppnlink |
326644954 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2164-10-485 |
up_date |
2024-07-04T00:05:55.458Z |
_version_ |
1803604779818024961 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027046516</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519225912.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-10-485</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027046516</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2164-10-485-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wendl, Michael C</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The theory of discovering rare variants via DNA sequencing</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Wendl and Wilson; licensee BioMed Central Ltd. 2009</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Rare population variants are known to have important biomedical implications, but their systematic discovery has only recently been enabled by advances in DNA sequencing. The design process of a discovery project remains formidable, being limited to ad hoc mixtures of extensive computer simulation and pilot sequencing. Here, the task is examined from a general mathematical perspective. Results We pose and solve the population sequencing design problem and subsequently apply standard optimization techniques that maximize the discovery probability. Emphasis is placed on cases whose discovery thresholds place them within reach of current technologies. We find that parameter values characteristic of rare-variant projects lead to a general, yet remarkably simple set of optimization rules. Specifically, optimal processing occurs at constant values of the per-sample redundancy, refuting current notions that sample size should be selected outright. Optimal project-wide redundancy and sample size are then shown to be inversely proportional to the desired variant frequency. A second family of constants governs these relationships, permitting one to immediately establish the most efficient settings for a given set of discovery conditions. Our results largely concur with the empirical design of the Thousand Genomes Project, though they furnish some additional refinement. Conclusion The optimization principles reported here dramatically simplify the design process and should be broadly useful as rare-variant projects become both more important and routine in the future.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rare Variant</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rare Allele</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Variation Project</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coverage Probability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization Principle</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wilson, Richard K</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">10(2009), 1 vom: 20. Okt.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:1</subfield><subfield code="g">day:20</subfield><subfield code="g">month:10</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2164-10-485</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2009</subfield><subfield code="e">1</subfield><subfield code="b">20</subfield><subfield code="c">10</subfield></datafield></record></collection>
|
score |
7.401102 |