Comparison of feature selection and classification for MALDI-MS data
Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algori...
Ausführliche Beschreibung
Autor*in: |
Liu, Qingzhong [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2009 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: BMC genomics - London : BioMed Central, 2000, 10(2009), Suppl 1 vom: 07. Juli |
---|---|
Übergeordnetes Werk: |
volume:10 ; year:2009 ; number:Suppl 1 ; day:07 ; month:07 |
Links: |
---|
DOI / URN: |
10.1186/1471-2164-10-S1-S3 |
---|
Katalog-ID: |
SPR027048330 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027048330 | ||
003 | DE-627 | ||
005 | 20230519154355.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2009 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2164-10-S1-S3 |2 doi | |
035 | |a (DE-627)SPR027048330 | ||
035 | |a (SPR)1471-2164-10-S1-S3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Liu, Qingzhong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Comparison of feature selection and classification for MALDI-MS data |
264 | 1 | |c 2009 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study. | ||
650 | 4 | |a Feature Selection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Support Vector Machine Classifier |7 (dpeaa)DE-He213 | |
650 | 4 | |a Feature Selection Method |7 (dpeaa)DE-He213 | |
650 | 4 | |a Peak Detection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mass Spectrometry Data |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sung, Andrew H |4 aut | |
700 | 1 | |a Qiao, Mengyu |4 aut | |
700 | 1 | |a Chen, Zhongxue |4 aut | |
700 | 1 | |a Yang, Jack Y |4 aut | |
700 | 1 | |a Yang, Mary Qu |4 aut | |
700 | 1 | |a Huang, Xudong |4 aut | |
700 | 1 | |a Deng, Youping |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC genomics |d London : BioMed Central, 2000 |g 10(2009), Suppl 1 vom: 07. Juli |w (DE-627)326644954 |w (DE-600)2041499-7 |x 1471-2164 |7 nnns |
773 | 1 | 8 | |g volume:10 |g year:2009 |g number:Suppl 1 |g day:07 |g month:07 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2164-10-S1-S3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 10 |j 2009 |e Suppl 1 |b 07 |c 07 |
author_variant |
q l ql a h s ah ahs m q mq z c zc j y y jy jyy m q y mq mqy x h xh y d yd |
---|---|
matchkey_str |
article:14712164:2009----::oprsnfetrslcinncasfct |
hierarchy_sort_str |
2009 |
publishDate |
2009 |
allfields |
10.1186/1471-2164-10-S1-S3 doi (DE-627)SPR027048330 (SPR)1471-2164-10-S1-S3-e DE-627 ger DE-627 rakwb eng Liu, Qingzhong verfasserin aut Comparison of feature selection and classification for MALDI-MS data 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study. Feature Selection (dpeaa)DE-He213 Support Vector Machine Classifier (dpeaa)DE-He213 Feature Selection Method (dpeaa)DE-He213 Peak Detection (dpeaa)DE-He213 Mass Spectrometry Data (dpeaa)DE-He213 Sung, Andrew H aut Qiao, Mengyu aut Chen, Zhongxue aut Yang, Jack Y aut Yang, Mary Qu aut Huang, Xudong aut Deng, Youping aut Enthalten in BMC genomics London : BioMed Central, 2000 10(2009), Suppl 1 vom: 07. Juli (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:10 year:2009 number:Suppl 1 day:07 month:07 https://dx.doi.org/10.1186/1471-2164-10-S1-S3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2009 Suppl 1 07 07 |
spelling |
10.1186/1471-2164-10-S1-S3 doi (DE-627)SPR027048330 (SPR)1471-2164-10-S1-S3-e DE-627 ger DE-627 rakwb eng Liu, Qingzhong verfasserin aut Comparison of feature selection and classification for MALDI-MS data 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study. Feature Selection (dpeaa)DE-He213 Support Vector Machine Classifier (dpeaa)DE-He213 Feature Selection Method (dpeaa)DE-He213 Peak Detection (dpeaa)DE-He213 Mass Spectrometry Data (dpeaa)DE-He213 Sung, Andrew H aut Qiao, Mengyu aut Chen, Zhongxue aut Yang, Jack Y aut Yang, Mary Qu aut Huang, Xudong aut Deng, Youping aut Enthalten in BMC genomics London : BioMed Central, 2000 10(2009), Suppl 1 vom: 07. Juli (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:10 year:2009 number:Suppl 1 day:07 month:07 https://dx.doi.org/10.1186/1471-2164-10-S1-S3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2009 Suppl 1 07 07 |
allfields_unstemmed |
10.1186/1471-2164-10-S1-S3 doi (DE-627)SPR027048330 (SPR)1471-2164-10-S1-S3-e DE-627 ger DE-627 rakwb eng Liu, Qingzhong verfasserin aut Comparison of feature selection and classification for MALDI-MS data 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study. Feature Selection (dpeaa)DE-He213 Support Vector Machine Classifier (dpeaa)DE-He213 Feature Selection Method (dpeaa)DE-He213 Peak Detection (dpeaa)DE-He213 Mass Spectrometry Data (dpeaa)DE-He213 Sung, Andrew H aut Qiao, Mengyu aut Chen, Zhongxue aut Yang, Jack Y aut Yang, Mary Qu aut Huang, Xudong aut Deng, Youping aut Enthalten in BMC genomics London : BioMed Central, 2000 10(2009), Suppl 1 vom: 07. Juli (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:10 year:2009 number:Suppl 1 day:07 month:07 https://dx.doi.org/10.1186/1471-2164-10-S1-S3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2009 Suppl 1 07 07 |
allfieldsGer |
10.1186/1471-2164-10-S1-S3 doi (DE-627)SPR027048330 (SPR)1471-2164-10-S1-S3-e DE-627 ger DE-627 rakwb eng Liu, Qingzhong verfasserin aut Comparison of feature selection and classification for MALDI-MS data 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study. Feature Selection (dpeaa)DE-He213 Support Vector Machine Classifier (dpeaa)DE-He213 Feature Selection Method (dpeaa)DE-He213 Peak Detection (dpeaa)DE-He213 Mass Spectrometry Data (dpeaa)DE-He213 Sung, Andrew H aut Qiao, Mengyu aut Chen, Zhongxue aut Yang, Jack Y aut Yang, Mary Qu aut Huang, Xudong aut Deng, Youping aut Enthalten in BMC genomics London : BioMed Central, 2000 10(2009), Suppl 1 vom: 07. Juli (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:10 year:2009 number:Suppl 1 day:07 month:07 https://dx.doi.org/10.1186/1471-2164-10-S1-S3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2009 Suppl 1 07 07 |
allfieldsSound |
10.1186/1471-2164-10-S1-S3 doi (DE-627)SPR027048330 (SPR)1471-2164-10-S1-S3-e DE-627 ger DE-627 rakwb eng Liu, Qingzhong verfasserin aut Comparison of feature selection and classification for MALDI-MS data 2009 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study. Feature Selection (dpeaa)DE-He213 Support Vector Machine Classifier (dpeaa)DE-He213 Feature Selection Method (dpeaa)DE-He213 Peak Detection (dpeaa)DE-He213 Mass Spectrometry Data (dpeaa)DE-He213 Sung, Andrew H aut Qiao, Mengyu aut Chen, Zhongxue aut Yang, Jack Y aut Yang, Mary Qu aut Huang, Xudong aut Deng, Youping aut Enthalten in BMC genomics London : BioMed Central, 2000 10(2009), Suppl 1 vom: 07. Juli (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:10 year:2009 number:Suppl 1 day:07 month:07 https://dx.doi.org/10.1186/1471-2164-10-S1-S3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 10 2009 Suppl 1 07 07 |
language |
English |
source |
Enthalten in BMC genomics 10(2009), Suppl 1 vom: 07. Juli volume:10 year:2009 number:Suppl 1 day:07 month:07 |
sourceStr |
Enthalten in BMC genomics 10(2009), Suppl 1 vom: 07. Juli volume:10 year:2009 number:Suppl 1 day:07 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Feature Selection Support Vector Machine Classifier Feature Selection Method Peak Detection Mass Spectrometry Data |
isfreeaccess_bool |
true |
container_title |
BMC genomics |
authorswithroles_txt_mv |
Liu, Qingzhong @@aut@@ Sung, Andrew H @@aut@@ Qiao, Mengyu @@aut@@ Chen, Zhongxue @@aut@@ Yang, Jack Y @@aut@@ Yang, Mary Qu @@aut@@ Huang, Xudong @@aut@@ Deng, Youping @@aut@@ |
publishDateDaySort_date |
2009-07-07T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
SPR027048330 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027048330</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519154355.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-10-S1-S3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027048330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2164-10-S1-S3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Qingzhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of feature selection and classification for MALDI-MS data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature Selection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Support Vector Machine Classifier</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature Selection Method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peak Detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass Spectrometry Data</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sung, Andrew H</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Mengyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhongxue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jack Y</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Mary Qu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Xudong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Youping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">10(2009), Suppl 1 vom: 07. Juli</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2164-10-S1-S3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2009</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">07</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Liu, Qingzhong |
spellingShingle |
Liu, Qingzhong misc Feature Selection misc Support Vector Machine Classifier misc Feature Selection Method misc Peak Detection misc Mass Spectrometry Data Comparison of feature selection and classification for MALDI-MS data |
authorStr |
Liu, Qingzhong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2164 |
topic_title |
Comparison of feature selection and classification for MALDI-MS data Feature Selection (dpeaa)DE-He213 Support Vector Machine Classifier (dpeaa)DE-He213 Feature Selection Method (dpeaa)DE-He213 Peak Detection (dpeaa)DE-He213 Mass Spectrometry Data (dpeaa)DE-He213 |
topic |
misc Feature Selection misc Support Vector Machine Classifier misc Feature Selection Method misc Peak Detection misc Mass Spectrometry Data |
topic_unstemmed |
misc Feature Selection misc Support Vector Machine Classifier misc Feature Selection Method misc Peak Detection misc Mass Spectrometry Data |
topic_browse |
misc Feature Selection misc Support Vector Machine Classifier misc Feature Selection Method misc Peak Detection misc Mass Spectrometry Data |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
Comparison of feature selection and classification for MALDI-MS data |
ctrlnum |
(DE-627)SPR027048330 (SPR)1471-2164-10-S1-S3-e |
title_full |
Comparison of feature selection and classification for MALDI-MS data |
author_sort |
Liu, Qingzhong |
journal |
BMC genomics |
journalStr |
BMC genomics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2009 |
contenttype_str_mv |
txt |
author_browse |
Liu, Qingzhong Sung, Andrew H Qiao, Mengyu Chen, Zhongxue Yang, Jack Y Yang, Mary Qu Huang, Xudong Deng, Youping |
container_volume |
10 |
format_se |
Elektronische Aufsätze |
author-letter |
Liu, Qingzhong |
doi_str_mv |
10.1186/1471-2164-10-S1-S3 |
title_sort |
comparison of feature selection and classification for maldi-ms data |
title_auth |
Comparison of feature selection and classification for MALDI-MS data |
abstract |
Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study. © Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study. © Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study. © Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
Suppl 1 |
title_short |
Comparison of feature selection and classification for MALDI-MS data |
url |
https://dx.doi.org/10.1186/1471-2164-10-S1-S3 |
remote_bool |
true |
author2 |
Sung, Andrew H Qiao, Mengyu Chen, Zhongxue Yang, Jack Y Yang, Mary Qu Huang, Xudong Deng, Youping |
author2Str |
Sung, Andrew H Qiao, Mengyu Chen, Zhongxue Yang, Jack Y Yang, Mary Qu Huang, Xudong Deng, Youping |
ppnlink |
326644954 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2164-10-S1-S3 |
up_date |
2024-07-04T00:06:26.991Z |
_version_ |
1803604812882771968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027048330</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519154355.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2009 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-10-S1-S3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027048330</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2164-10-S1-S3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Liu, Qingzhong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Comparison of feature selection and classification for MALDI-MS data</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2009</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Liu et al; licensee BioMed Central Ltd. 2009. This article is published under license to BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Introduction In the classification of Mass Spectrometry (MS) proteomics data, peak detection, feature selection, and learning classifiers are critical to classification accuracy. To better understand which methods are more accurate when classifying data, some publicly available peak detection algorithms for Matrix assisted Laser Desorption Ionization Mass Spectrometry (MALDI-MS) data were recently compared; however, the issue of different feature selection methods and different classification models as they relate to classification performance has not been addressed. With the application of intelligent computing, much progress has been made in the development of feature selection methods and learning classifiers for the analysis of high-throughput biological data. The main objective of this paper is to compare the methods of feature selection and different learning classifiers when applied to MALDI-MS data and to provide a subsequent reference for the analysis of MS proteomics data. Results We compared a well-known method of feature selection, Support Vector Machine Recursive Feature Elimination (SVMRFE), and a recently developed method, Gradient based Leave-one-out Gene Selection (GLGS) that effectively performs microarray data analysis. We also compared several learning classifiers including K-Nearest Neighbor Classifier (KNNC), Naïve Bayes Classifier (NBC), Nearest Mean Scaled Classifier (NMSC), uncorrelated normal based quadratic Bayes Classifier recorded as UDC, Support Vector Machines, and a distance metric learning for Large Margin Nearest Neighbor classifier (LMNN) based on Mahanalobis distance. To compare, we conducted a comprehensive experimental study using three types of MALDI-MS data. Conclusion Regarding feature selection, SVMRFE outperformed GLGS in classification. As for the learning classifiers, when classification models derived from the best training were compared, SVMs performed the best with respect to the expected testing accuracy. However, the distance metric learning LMNN outperformed SVMs and other classifiers on evaluating the best testing. In such cases, the optimum classification model based on LMNN is worth investigating for future study.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature Selection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Support Vector Machine Classifier</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feature Selection Method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Peak Detection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass Spectrometry Data</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sung, Andrew H</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Qiao, Mengyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Zhongxue</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jack Y</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Mary Qu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Xudong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Youping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">10(2009), Suppl 1 vom: 07. Juli</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:10</subfield><subfield code="g">year:2009</subfield><subfield code="g">number:Suppl 1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2164-10-S1-S3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">10</subfield><subfield code="j">2009</subfield><subfield code="e">Suppl 1</subfield><subfield code="b">07</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.4023542 |