Combined genotype and haplotype tests for region-based association studies
Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical test...
Ausführliche Beschreibung
Autor*in: |
Zakharov, Sergii [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Zakharov et al.; licensee BioMed Central Ltd. 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC genomics - London : BioMed Central, 2000, 14(2013), 1 vom: 21. Aug. |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2013 ; number:1 ; day:21 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/1471-2164-14-569 |
---|
Katalog-ID: |
SPR027082628 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027082628 | ||
003 | DE-627 | ||
005 | 20230519144500.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2164-14-569 |2 doi | |
035 | |a (DE-627)SPR027082628 | ||
035 | |a (SPR)1471-2164-14-569-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zakharov, Sergii |e verfasserin |4 aut | |
245 | 1 | 0 | |a Combined genotype and haplotype tests for region-based association studies |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Zakharov et al.; licensee BioMed Central Ltd. 2013 | ||
520 | |a Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality haplotypes and genotypes may be available for analysis given the development of next generation sequencing technologies and haplotype assembly algorithms. Results As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an association, we propose to use both of them with the purpose of preserving high power under both genotype and haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the performance of these two approaches based on a theoretical model, population genetics simulations and analysis of a real data set. Conclusions Based on a theoretical model, population genetics simulations and analysis of a central corneal thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and haplotype approach has a high potential utility for applications in association studies. | ||
650 | 4 | |a Genotype-based tests |7 (dpeaa)DE-He213 | |
650 | 4 | |a Haplotype-based tests |7 (dpeaa)DE-He213 | |
650 | 4 | |a Association analysis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Test statistic combination |7 (dpeaa)DE-He213 | |
700 | 1 | |a Wong, Tien Yin |4 aut | |
700 | 1 | |a Aung, Tin |4 aut | |
700 | 1 | |a Vithana, Eranga Nishanthie |4 aut | |
700 | 1 | |a Khor, Chiea Chuen |4 aut | |
700 | 1 | |a Salim, Agus |4 aut | |
700 | 1 | |a Thalamuthu, Anbupalam |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC genomics |d London : BioMed Central, 2000 |g 14(2013), 1 vom: 21. Aug. |w (DE-627)326644954 |w (DE-600)2041499-7 |x 1471-2164 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2013 |g number:1 |g day:21 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2164-14-569 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2013 |e 1 |b 21 |c 08 |
author_variant |
s z sz t y w ty tyw t a ta e n v en env c c k cc cck a s as a t at |
---|---|
matchkey_str |
article:14712164:2013----::obndeoyenhpoyeetfreinaea |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1186/1471-2164-14-569 doi (DE-627)SPR027082628 (SPR)1471-2164-14-569-e DE-627 ger DE-627 rakwb eng Zakharov, Sergii verfasserin aut Combined genotype and haplotype tests for region-based association studies 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zakharov et al.; licensee BioMed Central Ltd. 2013 Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality haplotypes and genotypes may be available for analysis given the development of next generation sequencing technologies and haplotype assembly algorithms. Results As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an association, we propose to use both of them with the purpose of preserving high power under both genotype and haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the performance of these two approaches based on a theoretical model, population genetics simulations and analysis of a real data set. Conclusions Based on a theoretical model, population genetics simulations and analysis of a central corneal thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and haplotype approach has a high potential utility for applications in association studies. Genotype-based tests (dpeaa)DE-He213 Haplotype-based tests (dpeaa)DE-He213 Association analysis (dpeaa)DE-He213 Test statistic combination (dpeaa)DE-He213 Wong, Tien Yin aut Aung, Tin aut Vithana, Eranga Nishanthie aut Khor, Chiea Chuen aut Salim, Agus aut Thalamuthu, Anbupalam aut Enthalten in BMC genomics London : BioMed Central, 2000 14(2013), 1 vom: 21. Aug. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:14 year:2013 number:1 day:21 month:08 https://dx.doi.org/10.1186/1471-2164-14-569 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 21 08 |
spelling |
10.1186/1471-2164-14-569 doi (DE-627)SPR027082628 (SPR)1471-2164-14-569-e DE-627 ger DE-627 rakwb eng Zakharov, Sergii verfasserin aut Combined genotype and haplotype tests for region-based association studies 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zakharov et al.; licensee BioMed Central Ltd. 2013 Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality haplotypes and genotypes may be available for analysis given the development of next generation sequencing technologies and haplotype assembly algorithms. Results As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an association, we propose to use both of them with the purpose of preserving high power under both genotype and haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the performance of these two approaches based on a theoretical model, population genetics simulations and analysis of a real data set. Conclusions Based on a theoretical model, population genetics simulations and analysis of a central corneal thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and haplotype approach has a high potential utility for applications in association studies. Genotype-based tests (dpeaa)DE-He213 Haplotype-based tests (dpeaa)DE-He213 Association analysis (dpeaa)DE-He213 Test statistic combination (dpeaa)DE-He213 Wong, Tien Yin aut Aung, Tin aut Vithana, Eranga Nishanthie aut Khor, Chiea Chuen aut Salim, Agus aut Thalamuthu, Anbupalam aut Enthalten in BMC genomics London : BioMed Central, 2000 14(2013), 1 vom: 21. Aug. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:14 year:2013 number:1 day:21 month:08 https://dx.doi.org/10.1186/1471-2164-14-569 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 21 08 |
allfields_unstemmed |
10.1186/1471-2164-14-569 doi (DE-627)SPR027082628 (SPR)1471-2164-14-569-e DE-627 ger DE-627 rakwb eng Zakharov, Sergii verfasserin aut Combined genotype and haplotype tests for region-based association studies 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zakharov et al.; licensee BioMed Central Ltd. 2013 Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality haplotypes and genotypes may be available for analysis given the development of next generation sequencing technologies and haplotype assembly algorithms. Results As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an association, we propose to use both of them with the purpose of preserving high power under both genotype and haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the performance of these two approaches based on a theoretical model, population genetics simulations and analysis of a real data set. Conclusions Based on a theoretical model, population genetics simulations and analysis of a central corneal thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and haplotype approach has a high potential utility for applications in association studies. Genotype-based tests (dpeaa)DE-He213 Haplotype-based tests (dpeaa)DE-He213 Association analysis (dpeaa)DE-He213 Test statistic combination (dpeaa)DE-He213 Wong, Tien Yin aut Aung, Tin aut Vithana, Eranga Nishanthie aut Khor, Chiea Chuen aut Salim, Agus aut Thalamuthu, Anbupalam aut Enthalten in BMC genomics London : BioMed Central, 2000 14(2013), 1 vom: 21. Aug. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:14 year:2013 number:1 day:21 month:08 https://dx.doi.org/10.1186/1471-2164-14-569 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 21 08 |
allfieldsGer |
10.1186/1471-2164-14-569 doi (DE-627)SPR027082628 (SPR)1471-2164-14-569-e DE-627 ger DE-627 rakwb eng Zakharov, Sergii verfasserin aut Combined genotype and haplotype tests for region-based association studies 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zakharov et al.; licensee BioMed Central Ltd. 2013 Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality haplotypes and genotypes may be available for analysis given the development of next generation sequencing technologies and haplotype assembly algorithms. Results As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an association, we propose to use both of them with the purpose of preserving high power under both genotype and haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the performance of these two approaches based on a theoretical model, population genetics simulations and analysis of a real data set. Conclusions Based on a theoretical model, population genetics simulations and analysis of a central corneal thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and haplotype approach has a high potential utility for applications in association studies. Genotype-based tests (dpeaa)DE-He213 Haplotype-based tests (dpeaa)DE-He213 Association analysis (dpeaa)DE-He213 Test statistic combination (dpeaa)DE-He213 Wong, Tien Yin aut Aung, Tin aut Vithana, Eranga Nishanthie aut Khor, Chiea Chuen aut Salim, Agus aut Thalamuthu, Anbupalam aut Enthalten in BMC genomics London : BioMed Central, 2000 14(2013), 1 vom: 21. Aug. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:14 year:2013 number:1 day:21 month:08 https://dx.doi.org/10.1186/1471-2164-14-569 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 21 08 |
allfieldsSound |
10.1186/1471-2164-14-569 doi (DE-627)SPR027082628 (SPR)1471-2164-14-569-e DE-627 ger DE-627 rakwb eng Zakharov, Sergii verfasserin aut Combined genotype and haplotype tests for region-based association studies 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zakharov et al.; licensee BioMed Central Ltd. 2013 Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality haplotypes and genotypes may be available for analysis given the development of next generation sequencing technologies and haplotype assembly algorithms. Results As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an association, we propose to use both of them with the purpose of preserving high power under both genotype and haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the performance of these two approaches based on a theoretical model, population genetics simulations and analysis of a real data set. Conclusions Based on a theoretical model, population genetics simulations and analysis of a central corneal thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and haplotype approach has a high potential utility for applications in association studies. Genotype-based tests (dpeaa)DE-He213 Haplotype-based tests (dpeaa)DE-He213 Association analysis (dpeaa)DE-He213 Test statistic combination (dpeaa)DE-He213 Wong, Tien Yin aut Aung, Tin aut Vithana, Eranga Nishanthie aut Khor, Chiea Chuen aut Salim, Agus aut Thalamuthu, Anbupalam aut Enthalten in BMC genomics London : BioMed Central, 2000 14(2013), 1 vom: 21. Aug. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:14 year:2013 number:1 day:21 month:08 https://dx.doi.org/10.1186/1471-2164-14-569 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 21 08 |
language |
English |
source |
Enthalten in BMC genomics 14(2013), 1 vom: 21. Aug. volume:14 year:2013 number:1 day:21 month:08 |
sourceStr |
Enthalten in BMC genomics 14(2013), 1 vom: 21. Aug. volume:14 year:2013 number:1 day:21 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Genotype-based tests Haplotype-based tests Association analysis Test statistic combination |
isfreeaccess_bool |
true |
container_title |
BMC genomics |
authorswithroles_txt_mv |
Zakharov, Sergii @@aut@@ Wong, Tien Yin @@aut@@ Aung, Tin @@aut@@ Vithana, Eranga Nishanthie @@aut@@ Khor, Chiea Chuen @@aut@@ Salim, Agus @@aut@@ Thalamuthu, Anbupalam @@aut@@ |
publishDateDaySort_date |
2013-08-21T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
SPR027082628 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027082628</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519144500.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-14-569</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027082628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2164-14-569-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zakharov, Sergii</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combined genotype and haplotype tests for region-based association studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Zakharov et al.; licensee BioMed Central Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality haplotypes and genotypes may be available for analysis given the development of next generation sequencing technologies and haplotype assembly algorithms. Results As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an association, we propose to use both of them with the purpose of preserving high power under both genotype and haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the performance of these two approaches based on a theoretical model, population genetics simulations and analysis of a real data set. Conclusions Based on a theoretical model, population genetics simulations and analysis of a central corneal thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and haplotype approach has a high potential utility for applications in association studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genotype-based tests</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Haplotype-based tests</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Association analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Test statistic combination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wong, Tien Yin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aung, Tin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vithana, Eranga Nishanthie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khor, Chiea Chuen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salim, Agus</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thalamuthu, Anbupalam</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">14(2013), 1 vom: 21. Aug.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2164-14-569</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Zakharov, Sergii |
spellingShingle |
Zakharov, Sergii misc Genotype-based tests misc Haplotype-based tests misc Association analysis misc Test statistic combination Combined genotype and haplotype tests for region-based association studies |
authorStr |
Zakharov, Sergii |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2164 |
topic_title |
Combined genotype and haplotype tests for region-based association studies Genotype-based tests (dpeaa)DE-He213 Haplotype-based tests (dpeaa)DE-He213 Association analysis (dpeaa)DE-He213 Test statistic combination (dpeaa)DE-He213 |
topic |
misc Genotype-based tests misc Haplotype-based tests misc Association analysis misc Test statistic combination |
topic_unstemmed |
misc Genotype-based tests misc Haplotype-based tests misc Association analysis misc Test statistic combination |
topic_browse |
misc Genotype-based tests misc Haplotype-based tests misc Association analysis misc Test statistic combination |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
Combined genotype and haplotype tests for region-based association studies |
ctrlnum |
(DE-627)SPR027082628 (SPR)1471-2164-14-569-e |
title_full |
Combined genotype and haplotype tests for region-based association studies |
author_sort |
Zakharov, Sergii |
journal |
BMC genomics |
journalStr |
BMC genomics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Zakharov, Sergii Wong, Tien Yin Aung, Tin Vithana, Eranga Nishanthie Khor, Chiea Chuen Salim, Agus Thalamuthu, Anbupalam |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Zakharov, Sergii |
doi_str_mv |
10.1186/1471-2164-14-569 |
title_sort |
combined genotype and haplotype tests for region-based association studies |
title_auth |
Combined genotype and haplotype tests for region-based association studies |
abstract |
Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality haplotypes and genotypes may be available for analysis given the development of next generation sequencing technologies and haplotype assembly algorithms. Results As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an association, we propose to use both of them with the purpose of preserving high power under both genotype and haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the performance of these two approaches based on a theoretical model, population genetics simulations and analysis of a real data set. Conclusions Based on a theoretical model, population genetics simulations and analysis of a central corneal thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and haplotype approach has a high potential utility for applications in association studies. © Zakharov et al.; licensee BioMed Central Ltd. 2013 |
abstractGer |
Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality haplotypes and genotypes may be available for analysis given the development of next generation sequencing technologies and haplotype assembly algorithms. Results As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an association, we propose to use both of them with the purpose of preserving high power under both genotype and haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the performance of these two approaches based on a theoretical model, population genetics simulations and analysis of a real data set. Conclusions Based on a theoretical model, population genetics simulations and analysis of a central corneal thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and haplotype approach has a high potential utility for applications in association studies. © Zakharov et al.; licensee BioMed Central Ltd. 2013 |
abstract_unstemmed |
Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality haplotypes and genotypes may be available for analysis given the development of next generation sequencing technologies and haplotype assembly algorithms. Results As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an association, we propose to use both of them with the purpose of preserving high power under both genotype and haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the performance of these two approaches based on a theoretical model, population genetics simulations and analysis of a real data set. Conclusions Based on a theoretical model, population genetics simulations and analysis of a central corneal thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and haplotype approach has a high potential utility for applications in association studies. © Zakharov et al.; licensee BioMed Central Ltd. 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Combined genotype and haplotype tests for region-based association studies |
url |
https://dx.doi.org/10.1186/1471-2164-14-569 |
remote_bool |
true |
author2 |
Wong, Tien Yin Aung, Tin Vithana, Eranga Nishanthie Khor, Chiea Chuen Salim, Agus Thalamuthu, Anbupalam |
author2Str |
Wong, Tien Yin Aung, Tin Vithana, Eranga Nishanthie Khor, Chiea Chuen Salim, Agus Thalamuthu, Anbupalam |
ppnlink |
326644954 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2164-14-569 |
up_date |
2024-07-04T00:16:49.403Z |
_version_ |
1803605465529057280 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027082628</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519144500.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2164-14-569</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027082628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2164-14-569-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zakharov, Sergii</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Combined genotype and haplotype tests for region-based association studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Zakharov et al.; licensee BioMed Central Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Although single-SNP analysis has proven to be useful in identifying many disease-associated loci, region-based analysis has several advantages. Empirically, it has been shown that region-based genotype and haplotype approaches may possess much higher power than single-SNP statistical tests. Both high quality haplotypes and genotypes may be available for analysis given the development of next generation sequencing technologies and haplotype assembly algorithms. Results As generally it is unknown whether genotypes or haplotypes are more relevant for identifying an association, we propose to use both of them with the purpose of preserving high power under both genotype and haplotype disease scenarios. We suggest two approaches for a combined association test and investigate the performance of these two approaches based on a theoretical model, population genetics simulations and analysis of a real data set. Conclusions Based on a theoretical model, population genetics simulations and analysis of a central corneal thickness (CCT) Genome Wide Association Study (GWAS) data set we have shown that combined genotype and haplotype approach has a high potential utility for applications in association studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Genotype-based tests</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Haplotype-based tests</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Association analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Test statistic combination</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wong, Tien Yin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aung, Tin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vithana, Eranga Nishanthie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khor, Chiea Chuen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salim, Agus</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Thalamuthu, Anbupalam</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">14(2013), 1 vom: 21. Aug.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2164-14-569</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.4024982 |