A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits
Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematicall...
Ausführliche Beschreibung
Autor*in: |
Zhu, Jun [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Zhu et al.; licensee BioMed Central. 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC genomics - London : BioMed Central, 2000, 16(2015), 1 vom: 14. Feb. |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2015 ; number:1 ; day:14 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s12864-015-1240-y |
---|
Katalog-ID: |
SPR027102955 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027102955 | ||
003 | DE-627 | ||
005 | 20230519082503.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12864-015-1240-y |2 doi | |
035 | |a (DE-627)SPR027102955 | ||
035 | |a (SPR)s12864-015-1240-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Zhu, Jun |e verfasserin |4 aut | |
245 | 1 | 2 | |a A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Zhu et al.; licensee BioMed Central. 2015 | ||
520 | |a Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection. | ||
650 | 4 | |a Systems genetics |7 (dpeaa)DE-He213 | |
650 | 4 | |a Swine model |7 (dpeaa)DE-He213 | |
650 | 4 | |a Complex human traits |7 (dpeaa)DE-He213 | |
700 | 1 | |a Chen, Congying |4 aut | |
700 | 1 | |a Yang, Bin |4 aut | |
700 | 1 | |a Guo, Yuanmei |4 aut | |
700 | 1 | |a Ai, Huashui |4 aut | |
700 | 1 | |a Ren, Jun |4 aut | |
700 | 1 | |a Peng, Zhiyu |4 aut | |
700 | 1 | |a Tu, Zhidong |4 aut | |
700 | 1 | |a Yang, Xia |4 aut | |
700 | 1 | |a Meng, Qingying |4 aut | |
700 | 1 | |a Friend, Stephen |4 aut | |
700 | 1 | |a Huang, Lusheng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC genomics |d London : BioMed Central, 2000 |g 16(2015), 1 vom: 14. Feb. |w (DE-627)326644954 |w (DE-600)2041499-7 |x 1471-2164 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2015 |g number:1 |g day:14 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12864-015-1240-y |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2015 |e 1 |b 14 |c 02 |
author_variant |
j z jz c c cc b y by y g yg h a ha j r jr z p zp z t zt x y xy q m qm s f sf l h lh |
---|---|
matchkey_str |
article:14712164:2015----::sseseeistdosielutaemcaimudrynh |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1186/s12864-015-1240-y doi (DE-627)SPR027102955 (SPR)s12864-015-1240-y-e DE-627 ger DE-627 rakwb eng Zhu, Jun verfasserin aut A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zhu et al.; licensee BioMed Central. 2015 Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection. Systems genetics (dpeaa)DE-He213 Swine model (dpeaa)DE-He213 Complex human traits (dpeaa)DE-He213 Chen, Congying aut Yang, Bin aut Guo, Yuanmei aut Ai, Huashui aut Ren, Jun aut Peng, Zhiyu aut Tu, Zhidong aut Yang, Xia aut Meng, Qingying aut Friend, Stephen aut Huang, Lusheng aut Enthalten in BMC genomics London : BioMed Central, 2000 16(2015), 1 vom: 14. Feb. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:16 year:2015 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12864-015-1240-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 14 02 |
spelling |
10.1186/s12864-015-1240-y doi (DE-627)SPR027102955 (SPR)s12864-015-1240-y-e DE-627 ger DE-627 rakwb eng Zhu, Jun verfasserin aut A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zhu et al.; licensee BioMed Central. 2015 Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection. Systems genetics (dpeaa)DE-He213 Swine model (dpeaa)DE-He213 Complex human traits (dpeaa)DE-He213 Chen, Congying aut Yang, Bin aut Guo, Yuanmei aut Ai, Huashui aut Ren, Jun aut Peng, Zhiyu aut Tu, Zhidong aut Yang, Xia aut Meng, Qingying aut Friend, Stephen aut Huang, Lusheng aut Enthalten in BMC genomics London : BioMed Central, 2000 16(2015), 1 vom: 14. Feb. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:16 year:2015 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12864-015-1240-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 14 02 |
allfields_unstemmed |
10.1186/s12864-015-1240-y doi (DE-627)SPR027102955 (SPR)s12864-015-1240-y-e DE-627 ger DE-627 rakwb eng Zhu, Jun verfasserin aut A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zhu et al.; licensee BioMed Central. 2015 Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection. Systems genetics (dpeaa)DE-He213 Swine model (dpeaa)DE-He213 Complex human traits (dpeaa)DE-He213 Chen, Congying aut Yang, Bin aut Guo, Yuanmei aut Ai, Huashui aut Ren, Jun aut Peng, Zhiyu aut Tu, Zhidong aut Yang, Xia aut Meng, Qingying aut Friend, Stephen aut Huang, Lusheng aut Enthalten in BMC genomics London : BioMed Central, 2000 16(2015), 1 vom: 14. Feb. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:16 year:2015 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12864-015-1240-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 14 02 |
allfieldsGer |
10.1186/s12864-015-1240-y doi (DE-627)SPR027102955 (SPR)s12864-015-1240-y-e DE-627 ger DE-627 rakwb eng Zhu, Jun verfasserin aut A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zhu et al.; licensee BioMed Central. 2015 Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection. Systems genetics (dpeaa)DE-He213 Swine model (dpeaa)DE-He213 Complex human traits (dpeaa)DE-He213 Chen, Congying aut Yang, Bin aut Guo, Yuanmei aut Ai, Huashui aut Ren, Jun aut Peng, Zhiyu aut Tu, Zhidong aut Yang, Xia aut Meng, Qingying aut Friend, Stephen aut Huang, Lusheng aut Enthalten in BMC genomics London : BioMed Central, 2000 16(2015), 1 vom: 14. Feb. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:16 year:2015 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12864-015-1240-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 14 02 |
allfieldsSound |
10.1186/s12864-015-1240-y doi (DE-627)SPR027102955 (SPR)s12864-015-1240-y-e DE-627 ger DE-627 rakwb eng Zhu, Jun verfasserin aut A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Zhu et al.; licensee BioMed Central. 2015 Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection. Systems genetics (dpeaa)DE-He213 Swine model (dpeaa)DE-He213 Complex human traits (dpeaa)DE-He213 Chen, Congying aut Yang, Bin aut Guo, Yuanmei aut Ai, Huashui aut Ren, Jun aut Peng, Zhiyu aut Tu, Zhidong aut Yang, Xia aut Meng, Qingying aut Friend, Stephen aut Huang, Lusheng aut Enthalten in BMC genomics London : BioMed Central, 2000 16(2015), 1 vom: 14. Feb. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:16 year:2015 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12864-015-1240-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2015 1 14 02 |
language |
English |
source |
Enthalten in BMC genomics 16(2015), 1 vom: 14. Feb. volume:16 year:2015 number:1 day:14 month:02 |
sourceStr |
Enthalten in BMC genomics 16(2015), 1 vom: 14. Feb. volume:16 year:2015 number:1 day:14 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Systems genetics Swine model Complex human traits |
isfreeaccess_bool |
true |
container_title |
BMC genomics |
authorswithroles_txt_mv |
Zhu, Jun @@aut@@ Chen, Congying @@aut@@ Yang, Bin @@aut@@ Guo, Yuanmei @@aut@@ Ai, Huashui @@aut@@ Ren, Jun @@aut@@ Peng, Zhiyu @@aut@@ Tu, Zhidong @@aut@@ Yang, Xia @@aut@@ Meng, Qingying @@aut@@ Friend, Stephen @@aut@@ Huang, Lusheng @@aut@@ |
publishDateDaySort_date |
2015-02-14T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
SPR027102955 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027102955</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519082503.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-015-1240-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027102955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12864-015-1240-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Zhu et al.; licensee BioMed Central. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems genetics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Swine model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex human traits</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Congying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Bin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Yuanmei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ai, Huashui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Zhiyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tu, Zhidong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Qingying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friend, Stephen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Lusheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">16(2015), 1 vom: 14. Feb.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12864-015-1240-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Zhu, Jun |
spellingShingle |
Zhu, Jun misc Systems genetics misc Swine model misc Complex human traits A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits |
authorStr |
Zhu, Jun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2164 |
topic_title |
A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits Systems genetics (dpeaa)DE-He213 Swine model (dpeaa)DE-He213 Complex human traits (dpeaa)DE-He213 |
topic |
misc Systems genetics misc Swine model misc Complex human traits |
topic_unstemmed |
misc Systems genetics misc Swine model misc Complex human traits |
topic_browse |
misc Systems genetics misc Swine model misc Complex human traits |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits |
ctrlnum |
(DE-627)SPR027102955 (SPR)s12864-015-1240-y-e |
title_full |
A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits |
author_sort |
Zhu, Jun |
journal |
BMC genomics |
journalStr |
BMC genomics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Zhu, Jun Chen, Congying Yang, Bin Guo, Yuanmei Ai, Huashui Ren, Jun Peng, Zhiyu Tu, Zhidong Yang, Xia Meng, Qingying Friend, Stephen Huang, Lusheng |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Zhu, Jun |
doi_str_mv |
10.1186/s12864-015-1240-y |
title_sort |
systems genetics study of swine illustrates mechanisms underlying human phenotypic traits |
title_auth |
A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits |
abstract |
Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection. © Zhu et al.; licensee BioMed Central. 2015 |
abstractGer |
Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection. © Zhu et al.; licensee BioMed Central. 2015 |
abstract_unstemmed |
Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection. © Zhu et al.; licensee BioMed Central. 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits |
url |
https://dx.doi.org/10.1186/s12864-015-1240-y |
remote_bool |
true |
author2 |
Chen, Congying Yang, Bin Guo, Yuanmei Ai, Huashui Ren, Jun Peng, Zhiyu Tu, Zhidong Yang, Xia Meng, Qingying Friend, Stephen Huang, Lusheng |
author2Str |
Chen, Congying Yang, Bin Guo, Yuanmei Ai, Huashui Ren, Jun Peng, Zhiyu Tu, Zhidong Yang, Xia Meng, Qingying Friend, Stephen Huang, Lusheng |
ppnlink |
326644954 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12864-015-1240-y |
up_date |
2024-07-04T00:22:47.437Z |
_version_ |
1803605840954916864 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027102955</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519082503.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-015-1240-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027102955</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12864-015-1240-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhu, Jun</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="2"><subfield code="a">A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Zhu et al.; licensee BioMed Central. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems genetics</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Swine model</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Complex human traits</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Congying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Bin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Yuanmei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ai, Huashui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ren, Jun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peng, Zhiyu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tu, Zhidong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Xia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Meng, Qingying</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Friend, Stephen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Huang, Lusheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">16(2015), 1 vom: 14. Feb.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12864-015-1240-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.4010744 |