Structure-guided selection of specificity determining positions in the human Kinome
Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided m...
Ausführliche Beschreibung
Autor*in: |
Moll, Mark [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Moll et al. 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC genomics - London : BioMed Central, 2000, 17(2016), Suppl 4 vom: 18. Aug. |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2016 ; number:Suppl 4 ; day:18 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/s12864-016-2790-3 |
---|
Katalog-ID: |
SPR027127141 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027127141 | ||
003 | DE-627 | ||
005 | 20230519200940.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12864-016-2790-3 |2 doi | |
035 | |a (DE-627)SPR027127141 | ||
035 | |a (SPR)s12864-016-2790-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Moll, Mark |e verfasserin |4 aut | |
245 | 1 | 0 | |a Structure-guided selection of specificity determining positions in the human Kinome |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Moll et al. 2016 | ||
520 | |a Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important. | ||
650 | 4 | |a Protein kinases |7 (dpeaa)DE-He213 | |
650 | 4 | |a Specificity determining positions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Binding affinity |7 (dpeaa)DE-He213 | |
700 | 1 | |a Finn, Paul W. |4 aut | |
700 | 1 | |a Kavraki, Lydia E. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC genomics |d London : BioMed Central, 2000 |g 17(2016), Suppl 4 vom: 18. Aug. |w (DE-627)326644954 |w (DE-600)2041499-7 |x 1471-2164 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2016 |g number:Suppl 4 |g day:18 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12864-016-2790-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2016 |e Suppl 4 |b 18 |c 08 |
author_variant |
m m mm p w f pw pwf l e k le lek |
---|---|
matchkey_str |
article:14712164:2016----::tutrgieslcinfpcfctdtriigoii |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1186/s12864-016-2790-3 doi (DE-627)SPR027127141 (SPR)s12864-016-2790-3-e DE-627 ger DE-627 rakwb eng Moll, Mark verfasserin aut Structure-guided selection of specificity determining positions in the human Kinome 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Moll et al. 2016 Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important. Protein kinases (dpeaa)DE-He213 Specificity determining positions (dpeaa)DE-He213 Binding affinity (dpeaa)DE-He213 Finn, Paul W. aut Kavraki, Lydia E. aut Enthalten in BMC genomics London : BioMed Central, 2000 17(2016), Suppl 4 vom: 18. Aug. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:17 year:2016 number:Suppl 4 day:18 month:08 https://dx.doi.org/10.1186/s12864-016-2790-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2016 Suppl 4 18 08 |
spelling |
10.1186/s12864-016-2790-3 doi (DE-627)SPR027127141 (SPR)s12864-016-2790-3-e DE-627 ger DE-627 rakwb eng Moll, Mark verfasserin aut Structure-guided selection of specificity determining positions in the human Kinome 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Moll et al. 2016 Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important. Protein kinases (dpeaa)DE-He213 Specificity determining positions (dpeaa)DE-He213 Binding affinity (dpeaa)DE-He213 Finn, Paul W. aut Kavraki, Lydia E. aut Enthalten in BMC genomics London : BioMed Central, 2000 17(2016), Suppl 4 vom: 18. Aug. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:17 year:2016 number:Suppl 4 day:18 month:08 https://dx.doi.org/10.1186/s12864-016-2790-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2016 Suppl 4 18 08 |
allfields_unstemmed |
10.1186/s12864-016-2790-3 doi (DE-627)SPR027127141 (SPR)s12864-016-2790-3-e DE-627 ger DE-627 rakwb eng Moll, Mark verfasserin aut Structure-guided selection of specificity determining positions in the human Kinome 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Moll et al. 2016 Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important. Protein kinases (dpeaa)DE-He213 Specificity determining positions (dpeaa)DE-He213 Binding affinity (dpeaa)DE-He213 Finn, Paul W. aut Kavraki, Lydia E. aut Enthalten in BMC genomics London : BioMed Central, 2000 17(2016), Suppl 4 vom: 18. Aug. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:17 year:2016 number:Suppl 4 day:18 month:08 https://dx.doi.org/10.1186/s12864-016-2790-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2016 Suppl 4 18 08 |
allfieldsGer |
10.1186/s12864-016-2790-3 doi (DE-627)SPR027127141 (SPR)s12864-016-2790-3-e DE-627 ger DE-627 rakwb eng Moll, Mark verfasserin aut Structure-guided selection of specificity determining positions in the human Kinome 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Moll et al. 2016 Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important. Protein kinases (dpeaa)DE-He213 Specificity determining positions (dpeaa)DE-He213 Binding affinity (dpeaa)DE-He213 Finn, Paul W. aut Kavraki, Lydia E. aut Enthalten in BMC genomics London : BioMed Central, 2000 17(2016), Suppl 4 vom: 18. Aug. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:17 year:2016 number:Suppl 4 day:18 month:08 https://dx.doi.org/10.1186/s12864-016-2790-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2016 Suppl 4 18 08 |
allfieldsSound |
10.1186/s12864-016-2790-3 doi (DE-627)SPR027127141 (SPR)s12864-016-2790-3-e DE-627 ger DE-627 rakwb eng Moll, Mark verfasserin aut Structure-guided selection of specificity determining positions in the human Kinome 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Moll et al. 2016 Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important. Protein kinases (dpeaa)DE-He213 Specificity determining positions (dpeaa)DE-He213 Binding affinity (dpeaa)DE-He213 Finn, Paul W. aut Kavraki, Lydia E. aut Enthalten in BMC genomics London : BioMed Central, 2000 17(2016), Suppl 4 vom: 18. Aug. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:17 year:2016 number:Suppl 4 day:18 month:08 https://dx.doi.org/10.1186/s12864-016-2790-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2016 Suppl 4 18 08 |
language |
English |
source |
Enthalten in BMC genomics 17(2016), Suppl 4 vom: 18. Aug. volume:17 year:2016 number:Suppl 4 day:18 month:08 |
sourceStr |
Enthalten in BMC genomics 17(2016), Suppl 4 vom: 18. Aug. volume:17 year:2016 number:Suppl 4 day:18 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Protein kinases Specificity determining positions Binding affinity |
isfreeaccess_bool |
true |
container_title |
BMC genomics |
authorswithroles_txt_mv |
Moll, Mark @@aut@@ Finn, Paul W. @@aut@@ Kavraki, Lydia E. @@aut@@ |
publishDateDaySort_date |
2016-08-18T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
SPR027127141 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027127141</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519200940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-016-2790-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027127141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12864-016-2790-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moll, Mark</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure-guided selection of specificity determining positions in the human Kinome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Moll et al. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein kinases</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Specificity determining positions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binding affinity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Finn, Paul W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kavraki, Lydia E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">17(2016), Suppl 4 vom: 18. Aug.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:Suppl 4</subfield><subfield code="g">day:18</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12864-016-2790-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2016</subfield><subfield code="e">Suppl 4</subfield><subfield code="b">18</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Moll, Mark |
spellingShingle |
Moll, Mark misc Protein kinases misc Specificity determining positions misc Binding affinity Structure-guided selection of specificity determining positions in the human Kinome |
authorStr |
Moll, Mark |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2164 |
topic_title |
Structure-guided selection of specificity determining positions in the human Kinome Protein kinases (dpeaa)DE-He213 Specificity determining positions (dpeaa)DE-He213 Binding affinity (dpeaa)DE-He213 |
topic |
misc Protein kinases misc Specificity determining positions misc Binding affinity |
topic_unstemmed |
misc Protein kinases misc Specificity determining positions misc Binding affinity |
topic_browse |
misc Protein kinases misc Specificity determining positions misc Binding affinity |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
Structure-guided selection of specificity determining positions in the human Kinome |
ctrlnum |
(DE-627)SPR027127141 (SPR)s12864-016-2790-3-e |
title_full |
Structure-guided selection of specificity determining positions in the human Kinome |
author_sort |
Moll, Mark |
journal |
BMC genomics |
journalStr |
BMC genomics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Moll, Mark Finn, Paul W. Kavraki, Lydia E. |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Moll, Mark |
doi_str_mv |
10.1186/s12864-016-2790-3 |
title_sort |
structure-guided selection of specificity determining positions in the human kinome |
title_auth |
Structure-guided selection of specificity determining positions in the human Kinome |
abstract |
Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important. © Moll et al. 2016 |
abstractGer |
Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important. © Moll et al. 2016 |
abstract_unstemmed |
Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important. © Moll et al. 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
Suppl 4 |
title_short |
Structure-guided selection of specificity determining positions in the human Kinome |
url |
https://dx.doi.org/10.1186/s12864-016-2790-3 |
remote_bool |
true |
author2 |
Finn, Paul W. Kavraki, Lydia E. |
author2Str |
Finn, Paul W. Kavraki, Lydia E. |
ppnlink |
326644954 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12864-016-2790-3 |
up_date |
2024-07-04T00:30:05.974Z |
_version_ |
1803606300794290176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027127141</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519200940.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-016-2790-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027127141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12864-016-2790-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Moll, Mark</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Structure-guided selection of specificity determining positions in the human Kinome</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Moll et al. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The human kinome contains many important drug targets. It is well-known that inhibitors of protein kinases bind with very different selectivity profiles. This is also the case for inhibitors of many other protein families. The increased availability of protein 3D structures has provided much information on the structural variation within a given protein family. However, the relationship between structural variations and binding specificity is complex and incompletely understood. We have developed a structural bioinformatics approach which provides an analysis of key determinants of binding selectivity as a tool to enhance the rational design of drugs with a specific selectivity profile. Results We propose a greedy algorithm that computes a subset of residue positions in a multiple sequence alignment such that structural and chemical variation in those positions helps explain known binding affinities. By providing this information, the main purpose of the algorithm is to provide experimentalists with possible insights into how the selectivity profile of certain inhibitors is achieved, which is useful for lead optimization. In addition, the algorithm can also be used to predict binding affinities for structures whose affinity for a given inhibitor is unknown. The algorithm’s performance is demonstrated using an extensive dataset for the human kinome. Conclusion We show that the binding affinity of 38 different kinase inhibitors can be explained with consistently high precision and accuracy using the variation of at most six residue positions in the kinome binding site. We show for several inhibitors that we are able to identify residues that are known to be functionally important.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Protein kinases</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Specificity determining positions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Binding affinity</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Finn, Paul W.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kavraki, Lydia E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">17(2016), Suppl 4 vom: 18. Aug.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:Suppl 4</subfield><subfield code="g">day:18</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12864-016-2790-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2016</subfield><subfield code="e">Suppl 4</subfield><subfield code="b">18</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.39989 |