Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness
Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore c...
Ausführliche Beschreibung
Autor*in: |
Fonseca, Larissa Fernanda Simielli [verfasserIn] Gimenez, Daniele Fernanda Jovino |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC genomics - London : BioMed Central, 2000, 18(2017), 1 vom: 04. Dez. |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2017 ; number:1 ; day:04 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s12864-017-4323-0 |
---|
Katalog-ID: |
SPR027137449 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027137449 | ||
003 | DE-627 | ||
005 | 20230519162418.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12864-017-4323-0 |2 doi | |
035 | |a (DE-627)SPR027137449 | ||
035 | |a (SPR)s12864-017-4323-0-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Fonseca, Larissa Fernanda Simielli |e verfasserin |4 aut | |
245 | 1 | 0 | |a Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2017 | ||
520 | |a Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. Results We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). Conclusions This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness. | ||
650 | 4 | |a RNA-Seq |7 (dpeaa)DE-He213 | |
650 | 4 | |a Transcriptome |7 (dpeaa)DE-He213 | |
650 | 4 | |a Meat quality |7 (dpeaa)DE-He213 | |
700 | 1 | |a Gimenez, Daniele Fernanda Jovino |4 aut | |
700 | 1 | |a dos Santos Silva, Danielly Beraldo |4 aut | |
700 | 1 | |a Barthelson, Roger |4 aut | |
700 | 1 | |a Baldi, Fernando |4 aut | |
700 | 1 | |a Ferro, Jesus Aparecido |4 aut | |
700 | 1 | |a Albuquerque, Lucia Galvão |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC genomics |d London : BioMed Central, 2000 |g 18(2017), 1 vom: 04. Dez. |w (DE-627)326644954 |w (DE-600)2041499-7 |x 1471-2164 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2017 |g number:1 |g day:04 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12864-017-4323-0 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2017 |e 1 |b 04 |c 12 |
author_variant |
l f s f lfs lfsf d f j g dfj dfjg s s d b d ssdb ssdbd r b rb f b fb j a f ja jaf l g a lg lga |
---|---|
matchkey_str |
article:14712164:2017----::ifrneigoagnepesoimsltsuonloeateih |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1186/s12864-017-4323-0 doi (DE-627)SPR027137449 (SPR)s12864-017-4323-0-e DE-627 ger DE-627 rakwb eng Fonseca, Larissa Fernanda Simielli verfasserin aut Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. Results We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). Conclusions This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness. RNA-Seq (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Meat quality (dpeaa)DE-He213 Gimenez, Daniele Fernanda Jovino aut dos Santos Silva, Danielly Beraldo aut Barthelson, Roger aut Baldi, Fernando aut Ferro, Jesus Aparecido aut Albuquerque, Lucia Galvão aut Enthalten in BMC genomics London : BioMed Central, 2000 18(2017), 1 vom: 04. Dez. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:18 year:2017 number:1 day:04 month:12 https://dx.doi.org/10.1186/s12864-017-4323-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2017 1 04 12 |
spelling |
10.1186/s12864-017-4323-0 doi (DE-627)SPR027137449 (SPR)s12864-017-4323-0-e DE-627 ger DE-627 rakwb eng Fonseca, Larissa Fernanda Simielli verfasserin aut Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. Results We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). Conclusions This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness. RNA-Seq (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Meat quality (dpeaa)DE-He213 Gimenez, Daniele Fernanda Jovino aut dos Santos Silva, Danielly Beraldo aut Barthelson, Roger aut Baldi, Fernando aut Ferro, Jesus Aparecido aut Albuquerque, Lucia Galvão aut Enthalten in BMC genomics London : BioMed Central, 2000 18(2017), 1 vom: 04. Dez. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:18 year:2017 number:1 day:04 month:12 https://dx.doi.org/10.1186/s12864-017-4323-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2017 1 04 12 |
allfields_unstemmed |
10.1186/s12864-017-4323-0 doi (DE-627)SPR027137449 (SPR)s12864-017-4323-0-e DE-627 ger DE-627 rakwb eng Fonseca, Larissa Fernanda Simielli verfasserin aut Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. Results We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). Conclusions This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness. RNA-Seq (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Meat quality (dpeaa)DE-He213 Gimenez, Daniele Fernanda Jovino aut dos Santos Silva, Danielly Beraldo aut Barthelson, Roger aut Baldi, Fernando aut Ferro, Jesus Aparecido aut Albuquerque, Lucia Galvão aut Enthalten in BMC genomics London : BioMed Central, 2000 18(2017), 1 vom: 04. Dez. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:18 year:2017 number:1 day:04 month:12 https://dx.doi.org/10.1186/s12864-017-4323-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2017 1 04 12 |
allfieldsGer |
10.1186/s12864-017-4323-0 doi (DE-627)SPR027137449 (SPR)s12864-017-4323-0-e DE-627 ger DE-627 rakwb eng Fonseca, Larissa Fernanda Simielli verfasserin aut Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. Results We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). Conclusions This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness. RNA-Seq (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Meat quality (dpeaa)DE-He213 Gimenez, Daniele Fernanda Jovino aut dos Santos Silva, Danielly Beraldo aut Barthelson, Roger aut Baldi, Fernando aut Ferro, Jesus Aparecido aut Albuquerque, Lucia Galvão aut Enthalten in BMC genomics London : BioMed Central, 2000 18(2017), 1 vom: 04. Dez. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:18 year:2017 number:1 day:04 month:12 https://dx.doi.org/10.1186/s12864-017-4323-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2017 1 04 12 |
allfieldsSound |
10.1186/s12864-017-4323-0 doi (DE-627)SPR027137449 (SPR)s12864-017-4323-0-e DE-627 ger DE-627 rakwb eng Fonseca, Larissa Fernanda Simielli verfasserin aut Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. Results We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). Conclusions This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness. RNA-Seq (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Meat quality (dpeaa)DE-He213 Gimenez, Daniele Fernanda Jovino aut dos Santos Silva, Danielly Beraldo aut Barthelson, Roger aut Baldi, Fernando aut Ferro, Jesus Aparecido aut Albuquerque, Lucia Galvão aut Enthalten in BMC genomics London : BioMed Central, 2000 18(2017), 1 vom: 04. Dez. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:18 year:2017 number:1 day:04 month:12 https://dx.doi.org/10.1186/s12864-017-4323-0 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2017 1 04 12 |
language |
English |
source |
Enthalten in BMC genomics 18(2017), 1 vom: 04. Dez. volume:18 year:2017 number:1 day:04 month:12 |
sourceStr |
Enthalten in BMC genomics 18(2017), 1 vom: 04. Dez. volume:18 year:2017 number:1 day:04 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
RNA-Seq Transcriptome Meat quality |
isfreeaccess_bool |
true |
container_title |
BMC genomics |
authorswithroles_txt_mv |
Fonseca, Larissa Fernanda Simielli @@aut@@ Gimenez, Daniele Fernanda Jovino @@aut@@ dos Santos Silva, Danielly Beraldo @@aut@@ Barthelson, Roger @@aut@@ Baldi, Fernando @@aut@@ Ferro, Jesus Aparecido @@aut@@ Albuquerque, Lucia Galvão @@aut@@ |
publishDateDaySort_date |
2017-12-04T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
SPR027137449 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027137449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519162418.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-017-4323-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027137449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12864-017-4323-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fonseca, Larissa Fernanda Simielli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. Results We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). Conclusions This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-Seq</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meat quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gimenez, Daniele Fernanda Jovino</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">dos Santos Silva, Danielly Beraldo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barthelson, Roger</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldi, Fernando</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferro, Jesus Aparecido</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albuquerque, Lucia Galvão</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">18(2017), 1 vom: 04. Dez.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12864-017-4323-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Fonseca, Larissa Fernanda Simielli |
spellingShingle |
Fonseca, Larissa Fernanda Simielli misc RNA-Seq misc Transcriptome misc Meat quality Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness |
authorStr |
Fonseca, Larissa Fernanda Simielli |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2164 |
topic_title |
Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness RNA-Seq (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Meat quality (dpeaa)DE-He213 |
topic |
misc RNA-Seq misc Transcriptome misc Meat quality |
topic_unstemmed |
misc RNA-Seq misc Transcriptome misc Meat quality |
topic_browse |
misc RNA-Seq misc Transcriptome misc Meat quality |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness |
ctrlnum |
(DE-627)SPR027137449 (SPR)s12864-017-4323-0-e |
title_full |
Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness |
author_sort |
Fonseca, Larissa Fernanda Simielli |
journal |
BMC genomics |
journalStr |
BMC genomics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Fonseca, Larissa Fernanda Simielli Gimenez, Daniele Fernanda Jovino dos Santos Silva, Danielly Beraldo Barthelson, Roger Baldi, Fernando Ferro, Jesus Aparecido Albuquerque, Lucia Galvão |
container_volume |
18 |
format_se |
Elektronische Aufsätze |
author-letter |
Fonseca, Larissa Fernanda Simielli |
doi_str_mv |
10.1186/s12864-017-4323-0 |
title_sort |
differences in global gene expression in muscle tissue of nellore cattle with divergent meat tenderness |
title_auth |
Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness |
abstract |
Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. Results We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). Conclusions This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness. © The Author(s). 2017 |
abstractGer |
Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. Results We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). Conclusions This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness. © The Author(s). 2017 |
abstract_unstemmed |
Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. Results We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). Conclusions This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness. © The Author(s). 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness |
url |
https://dx.doi.org/10.1186/s12864-017-4323-0 |
remote_bool |
true |
author2 |
Gimenez, Daniele Fernanda Jovino dos Santos Silva, Danielly Beraldo Barthelson, Roger Baldi, Fernando Ferro, Jesus Aparecido Albuquerque, Lucia Galvão |
author2Str |
Gimenez, Daniele Fernanda Jovino dos Santos Silva, Danielly Beraldo Barthelson, Roger Baldi, Fernando Ferro, Jesus Aparecido Albuquerque, Lucia Galvão |
ppnlink |
326644954 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12864-017-4323-0 |
up_date |
2024-07-04T00:33:13.313Z |
_version_ |
1803606497233469440 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027137449</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519162418.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-017-4323-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027137449</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12864-017-4323-0-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fonseca, Larissa Fernanda Simielli</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differences in global gene expression in muscle tissue of Nellore cattle with divergent meat tenderness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Meat tenderness is the consumer’s most preferred sensory attribute. This trait is affected by a number of factors, including genotype, age, animal sex, and pre- and post-slaughter management. In view of the high percentage of Zebu genes in the Brazilian cattle population, mainly Nellore cattle, the improvement of meat tenderness is important since the increasing proportion of Zebu genes in the population reduces meat tenderness. However, the measurement of this trait is difficult once it can only be made after animal slaughtering. New technologies such as RNA-Seq have been used to increase our understanding of the genetic processes regulating quantitative traits phenotypes. The objective of this study was to identify differentially expressed genes related to meat tenderness, in Nellore cattle in order to elucidate the genetic factors associated with meat quality. Samples were collected 24 h postmortem and the meat was not aged. Results We found 40 differentially expressed genes related to meat tenderness, 17 with known functions. Fourteen genes were up-regulated and 3 were down-regulated in the tender meat group. Genes related to ubiquitin metabolism, transport of molecules such as calcium and oxygen, acid-base balance, collagen production, actin, myosin, and fat were identified. The PCP4L1 (Purkinje cell protein 4 like 1) and BoLA-DQB (major histocompatibility complex, class II, DQ beta) genes were validated by qRT-PCR. The results showed relative expression values similar to those obtained by RNA-Seq, with the same direction of expression (i.e., the two techniques revealed higher expression of PCP4L1 in tender meat samples and of BoLA-DQB in tough meat samples). Conclusions This study revealed the differential expression of genes and functions in Nellore cattle muscle tissue, which may contain potential biomarkers involved in meat tenderness.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">RNA-Seq</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meat quality</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gimenez, Daniele Fernanda Jovino</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">dos Santos Silva, Danielly Beraldo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barthelson, Roger</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldi, Fernando</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferro, Jesus Aparecido</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Albuquerque, Lucia Galvão</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">18(2017), 1 vom: 04. Dez.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:04</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12864-017-4323-0</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">04</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.4016542 |