An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells
Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize...
Ausführliche Beschreibung
Autor*in: |
Kennedy, Elizabeth M. [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC genomics - London : BioMed Central, 2000, 19(2018), 1 vom: 19. Juni |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2018 ; number:1 ; day:19 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s12864-018-4842-3 |
---|
Katalog-ID: |
SPR027143635 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027143635 | ||
003 | DE-627 | ||
005 | 20230520005415.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12864-018-4842-3 |2 doi | |
035 | |a (DE-627)SPR027143635 | ||
035 | |a (SPR)s12864-018-4842-3-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kennedy, Elizabeth M. |e verfasserin |0 (orcid)0000-0003-0074-2840 |4 aut | |
245 | 1 | 3 | |a An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2018 | ||
520 | |a Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies. | ||
650 | 4 | |a DNA methylation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Gene expression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Transcriptional regulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Blood cells |7 (dpeaa)DE-He213 | |
700 | 1 | |a Goehring, George N. |4 aut | |
700 | 1 | |a Nichols, Michael H. |4 aut | |
700 | 1 | |a Robins, Chloe |4 aut | |
700 | 1 | |a Mehta, Divya |4 aut | |
700 | 1 | |a Klengel, Torsten |4 aut | |
700 | 1 | |a Eskin, Eleazar |4 aut | |
700 | 1 | |a Smith, Alicia K. |4 aut | |
700 | 1 | |a Conneely, Karen N. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC genomics |d London : BioMed Central, 2000 |g 19(2018), 1 vom: 19. Juni |w (DE-627)326644954 |w (DE-600)2041499-7 |x 1471-2164 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2018 |g number:1 |g day:19 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12864-018-4842-3 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2018 |e 1 |b 19 |c 06 |
author_variant |
e m k em emk g n g gn gng m h n mh mhn c r cr d m dm t k tk e e ee a k s ak aks k n c kn knc |
---|---|
matchkey_str |
article:14712164:2018----::nnertdmcaayiotepgntcadcpognepe |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s12864-018-4842-3 doi (DE-627)SPR027143635 (SPR)s12864-018-4842-3-e DE-627 ger DE-627 rakwb eng Kennedy, Elizabeth M. verfasserin (orcid)0000-0003-0074-2840 aut An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies. DNA methylation (dpeaa)DE-He213 Gene expression (dpeaa)DE-He213 Transcriptional regulation (dpeaa)DE-He213 Blood cells (dpeaa)DE-He213 Goehring, George N. aut Nichols, Michael H. aut Robins, Chloe aut Mehta, Divya aut Klengel, Torsten aut Eskin, Eleazar aut Smith, Alicia K. aut Conneely, Karen N. aut Enthalten in BMC genomics London : BioMed Central, 2000 19(2018), 1 vom: 19. Juni (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:19 year:2018 number:1 day:19 month:06 https://dx.doi.org/10.1186/s12864-018-4842-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2018 1 19 06 |
spelling |
10.1186/s12864-018-4842-3 doi (DE-627)SPR027143635 (SPR)s12864-018-4842-3-e DE-627 ger DE-627 rakwb eng Kennedy, Elizabeth M. verfasserin (orcid)0000-0003-0074-2840 aut An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies. DNA methylation (dpeaa)DE-He213 Gene expression (dpeaa)DE-He213 Transcriptional regulation (dpeaa)DE-He213 Blood cells (dpeaa)DE-He213 Goehring, George N. aut Nichols, Michael H. aut Robins, Chloe aut Mehta, Divya aut Klengel, Torsten aut Eskin, Eleazar aut Smith, Alicia K. aut Conneely, Karen N. aut Enthalten in BMC genomics London : BioMed Central, 2000 19(2018), 1 vom: 19. Juni (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:19 year:2018 number:1 day:19 month:06 https://dx.doi.org/10.1186/s12864-018-4842-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2018 1 19 06 |
allfields_unstemmed |
10.1186/s12864-018-4842-3 doi (DE-627)SPR027143635 (SPR)s12864-018-4842-3-e DE-627 ger DE-627 rakwb eng Kennedy, Elizabeth M. verfasserin (orcid)0000-0003-0074-2840 aut An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies. DNA methylation (dpeaa)DE-He213 Gene expression (dpeaa)DE-He213 Transcriptional regulation (dpeaa)DE-He213 Blood cells (dpeaa)DE-He213 Goehring, George N. aut Nichols, Michael H. aut Robins, Chloe aut Mehta, Divya aut Klengel, Torsten aut Eskin, Eleazar aut Smith, Alicia K. aut Conneely, Karen N. aut Enthalten in BMC genomics London : BioMed Central, 2000 19(2018), 1 vom: 19. Juni (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:19 year:2018 number:1 day:19 month:06 https://dx.doi.org/10.1186/s12864-018-4842-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2018 1 19 06 |
allfieldsGer |
10.1186/s12864-018-4842-3 doi (DE-627)SPR027143635 (SPR)s12864-018-4842-3-e DE-627 ger DE-627 rakwb eng Kennedy, Elizabeth M. verfasserin (orcid)0000-0003-0074-2840 aut An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies. DNA methylation (dpeaa)DE-He213 Gene expression (dpeaa)DE-He213 Transcriptional regulation (dpeaa)DE-He213 Blood cells (dpeaa)DE-He213 Goehring, George N. aut Nichols, Michael H. aut Robins, Chloe aut Mehta, Divya aut Klengel, Torsten aut Eskin, Eleazar aut Smith, Alicia K. aut Conneely, Karen N. aut Enthalten in BMC genomics London : BioMed Central, 2000 19(2018), 1 vom: 19. Juni (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:19 year:2018 number:1 day:19 month:06 https://dx.doi.org/10.1186/s12864-018-4842-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2018 1 19 06 |
allfieldsSound |
10.1186/s12864-018-4842-3 doi (DE-627)SPR027143635 (SPR)s12864-018-4842-3-e DE-627 ger DE-627 rakwb eng Kennedy, Elizabeth M. verfasserin (orcid)0000-0003-0074-2840 aut An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies. DNA methylation (dpeaa)DE-He213 Gene expression (dpeaa)DE-He213 Transcriptional regulation (dpeaa)DE-He213 Blood cells (dpeaa)DE-He213 Goehring, George N. aut Nichols, Michael H. aut Robins, Chloe aut Mehta, Divya aut Klengel, Torsten aut Eskin, Eleazar aut Smith, Alicia K. aut Conneely, Karen N. aut Enthalten in BMC genomics London : BioMed Central, 2000 19(2018), 1 vom: 19. Juni (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:19 year:2018 number:1 day:19 month:06 https://dx.doi.org/10.1186/s12864-018-4842-3 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2018 1 19 06 |
language |
English |
source |
Enthalten in BMC genomics 19(2018), 1 vom: 19. Juni volume:19 year:2018 number:1 day:19 month:06 |
sourceStr |
Enthalten in BMC genomics 19(2018), 1 vom: 19. Juni volume:19 year:2018 number:1 day:19 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DNA methylation Gene expression Transcriptional regulation Blood cells |
isfreeaccess_bool |
true |
container_title |
BMC genomics |
authorswithroles_txt_mv |
Kennedy, Elizabeth M. @@aut@@ Goehring, George N. @@aut@@ Nichols, Michael H. @@aut@@ Robins, Chloe @@aut@@ Mehta, Divya @@aut@@ Klengel, Torsten @@aut@@ Eskin, Eleazar @@aut@@ Smith, Alicia K. @@aut@@ Conneely, Karen N. @@aut@@ |
publishDateDaySort_date |
2018-06-19T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
SPR027143635 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027143635</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520005415.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-018-4842-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027143635</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12864-018-4842-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kennedy, Elizabeth M.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0074-2840</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptional regulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood cells</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goehring, George N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nichols, Michael H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robins, Chloe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mehta, Divya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klengel, Torsten</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eskin, Eleazar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Alicia K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Conneely, Karen N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">19(2018), 1 vom: 19. Juni</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12864-018-4842-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Kennedy, Elizabeth M. |
spellingShingle |
Kennedy, Elizabeth M. misc DNA methylation misc Gene expression misc Transcriptional regulation misc Blood cells An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells |
authorStr |
Kennedy, Elizabeth M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2164 |
topic_title |
An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells DNA methylation (dpeaa)DE-He213 Gene expression (dpeaa)DE-He213 Transcriptional regulation (dpeaa)DE-He213 Blood cells (dpeaa)DE-He213 |
topic |
misc DNA methylation misc Gene expression misc Transcriptional regulation misc Blood cells |
topic_unstemmed |
misc DNA methylation misc Gene expression misc Transcriptional regulation misc Blood cells |
topic_browse |
misc DNA methylation misc Gene expression misc Transcriptional regulation misc Blood cells |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells |
ctrlnum |
(DE-627)SPR027143635 (SPR)s12864-018-4842-3-e |
title_full |
An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells |
author_sort |
Kennedy, Elizabeth M. |
journal |
BMC genomics |
journalStr |
BMC genomics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Kennedy, Elizabeth M. Goehring, George N. Nichols, Michael H. Robins, Chloe Mehta, Divya Klengel, Torsten Eskin, Eleazar Smith, Alicia K. Conneely, Karen N. |
container_volume |
19 |
format_se |
Elektronische Aufsätze |
author-letter |
Kennedy, Elizabeth M. |
doi_str_mv |
10.1186/s12864-018-4842-3 |
normlink |
(ORCID)0000-0003-0074-2840 |
normlink_prefix_str_mv |
(orcid)0000-0003-0074-2840 |
title_sort |
integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells |
title_auth |
An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells |
abstract |
Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies. © The Author(s). 2018 |
abstractGer |
Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies. © The Author(s). 2018 |
abstract_unstemmed |
Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies. © The Author(s). 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells |
url |
https://dx.doi.org/10.1186/s12864-018-4842-3 |
remote_bool |
true |
author2 |
Goehring, George N. Nichols, Michael H. Robins, Chloe Mehta, Divya Klengel, Torsten Eskin, Eleazar Smith, Alicia K. Conneely, Karen N. |
author2Str |
Goehring, George N. Nichols, Michael H. Robins, Chloe Mehta, Divya Klengel, Torsten Eskin, Eleazar Smith, Alicia K. Conneely, Karen N. |
ppnlink |
326644954 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12864-018-4842-3 |
up_date |
2024-07-04T00:35:00.758Z |
_version_ |
1803606609897717760 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027143635</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520005415.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-018-4842-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027143635</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12864-018-4842-3-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kennedy, Elizabeth M.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0074-2840</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="3"><subfield code="a">An integrated -omics analysis of the epigenetic landscape of gene expression in human blood cells</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Gene expression can be influenced by DNA methylation 1) distally, at regulatory elements such as enhancers, as well as 2) proximally, at promoters. Our current understanding of the influence of distal DNA methylation changes on gene expression patterns is incomplete. Here, we characterize genome-wide methylation and expression patterns for ~ 13 k genes to explore how DNA methylation interacts with gene expression, throughout the genome. Results We used a linear mixed model framework to assess the correlation of DNA methylation at ~ 400 k CpGs with gene expression changes at ~ 13 k transcripts in two independent datasets from human blood cells. Among CpGs at which methylation significantly associates with transcription (eCpGs), > 50% are distal (> 50 kb) or trans (different chromosome) to the correlated gene. Many eCpG-transcript pairs are consistent between studies and ~ 90% of neighboring eCpGs associate with the same gene, within studies. We find that enhancers (P < 5e-18) and microRNA genes (P = 9e-3) are overrepresented among trans eCpGs, and insulators and long intergenic non-coding RNAs are enriched among cis and distal eCpGs. Intragenic-eCpG-transcript correlations are negative in 60–70% of occurrences and are enriched for annotated gene promoters and enhancers (P < 0.002), highlighting the importance of intragenic regulation. Gene Ontology analysis indicates that trans eCpGs are enriched for transcription factor genes and chromatin modifiers, suggesting that some trans eCpGs represent the influence of gene networks and higher-order transcriptional control. Conclusions This work sheds new light on the interplay between epigenetic changes and gene expression, and provides useful data for mining biologically-relevant results from epigenome-wide association studies.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DNA methylation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Gene expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptional regulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood cells</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goehring, George N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nichols, Michael H.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robins, Chloe</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mehta, Divya</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Klengel, Torsten</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eskin, Eleazar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Alicia K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Conneely, Karen N.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">19(2018), 1 vom: 19. Juni</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:19</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12864-018-4842-3</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">19</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.4015436 |