Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress
Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and...
Ausführliche Beschreibung
Autor*in: |
Soltani, Nourolah [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC genomics - London : BioMed Central, 2000, 21(2020), 1 vom: 14. Feb. |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2020 ; number:1 ; day:14 ; month:02 |
Links: |
---|
DOI / URN: |
10.1186/s12864-020-6549-5 |
---|
Katalog-ID: |
SPR027162915 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027162915 | ||
003 | DE-627 | ||
005 | 20230519221709.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2020 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12864-020-6549-5 |2 doi | |
035 | |a (DE-627)SPR027162915 | ||
035 | |a (SPR)s12864-020-6549-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Soltani, Nourolah |e verfasserin |4 aut | |
245 | 1 | 0 | |a Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2020 | ||
520 | |a Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to $ O_{3} $, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to $ O_{3} $ stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the $ O_{3} $-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to $ O_{3} $. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis. | ||
650 | 4 | |a Northern red oak |7 (dpeaa)DE-He213 | |
650 | 4 | |a Transcriptome |7 (dpeaa)DE-He213 | |
650 | 4 | |a Plant-pathogen interactions |7 (dpeaa)DE-He213 | |
650 | 4 | |a Terpenoid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Mevalonic acid |7 (dpeaa)DE-He213 | |
650 | 4 | |a Methylerythritol phosphate |7 (dpeaa)DE-He213 | |
700 | 1 | |a Best, Teo |4 aut | |
700 | 1 | |a Grace, Dantria |4 aut | |
700 | 1 | |a Nelms, Christen |4 aut | |
700 | 1 | |a Shumaker, Ketia |4 aut | |
700 | 1 | |a Romero-Severson, Jeanne |4 aut | |
700 | 1 | |a Moses, Daniela |4 aut | |
700 | 1 | |a Schuster, Stephan |4 aut | |
700 | 1 | |a Staton, Margaret |0 (orcid)0000-0003-2971-9353 |4 aut | |
700 | 1 | |a Carlson, John |4 aut | |
700 | 1 | |a Gwinn, Kimberly |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC genomics |d London : BioMed Central, 2000 |g 21(2020), 1 vom: 14. Feb. |w (DE-627)326644954 |w (DE-600)2041499-7 |x 1471-2164 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2020 |g number:1 |g day:14 |g month:02 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12864-020-6549-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 21 |j 2020 |e 1 |b 14 |c 02 |
author_variant |
n s ns t b tb d g dg c n cn k s ks j r s jrs d m dm s s ss m s ms j c jc k g kg |
---|---|
matchkey_str |
article:14712164:2020----::rncitmpoieoqecsurrsodnti |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1186/s12864-020-6549-5 doi (DE-627)SPR027162915 (SPR)s12864-020-6549-5-e DE-627 ger DE-627 rakwb eng Soltani, Nourolah verfasserin aut Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2020 Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to $ O_{3} $, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to $ O_{3} $ stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the $ O_{3} $-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to $ O_{3} $. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis. Northern red oak (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Plant-pathogen interactions (dpeaa)DE-He213 Terpenoid (dpeaa)DE-He213 Mevalonic acid (dpeaa)DE-He213 Methylerythritol phosphate (dpeaa)DE-He213 Best, Teo aut Grace, Dantria aut Nelms, Christen aut Shumaker, Ketia aut Romero-Severson, Jeanne aut Moses, Daniela aut Schuster, Stephan aut Staton, Margaret (orcid)0000-0003-2971-9353 aut Carlson, John aut Gwinn, Kimberly aut Enthalten in BMC genomics London : BioMed Central, 2000 21(2020), 1 vom: 14. Feb. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:21 year:2020 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12864-020-6549-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2020 1 14 02 |
spelling |
10.1186/s12864-020-6549-5 doi (DE-627)SPR027162915 (SPR)s12864-020-6549-5-e DE-627 ger DE-627 rakwb eng Soltani, Nourolah verfasserin aut Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2020 Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to $ O_{3} $, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to $ O_{3} $ stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the $ O_{3} $-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to $ O_{3} $. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis. Northern red oak (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Plant-pathogen interactions (dpeaa)DE-He213 Terpenoid (dpeaa)DE-He213 Mevalonic acid (dpeaa)DE-He213 Methylerythritol phosphate (dpeaa)DE-He213 Best, Teo aut Grace, Dantria aut Nelms, Christen aut Shumaker, Ketia aut Romero-Severson, Jeanne aut Moses, Daniela aut Schuster, Stephan aut Staton, Margaret (orcid)0000-0003-2971-9353 aut Carlson, John aut Gwinn, Kimberly aut Enthalten in BMC genomics London : BioMed Central, 2000 21(2020), 1 vom: 14. Feb. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:21 year:2020 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12864-020-6549-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2020 1 14 02 |
allfields_unstemmed |
10.1186/s12864-020-6549-5 doi (DE-627)SPR027162915 (SPR)s12864-020-6549-5-e DE-627 ger DE-627 rakwb eng Soltani, Nourolah verfasserin aut Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2020 Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to $ O_{3} $, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to $ O_{3} $ stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the $ O_{3} $-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to $ O_{3} $. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis. Northern red oak (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Plant-pathogen interactions (dpeaa)DE-He213 Terpenoid (dpeaa)DE-He213 Mevalonic acid (dpeaa)DE-He213 Methylerythritol phosphate (dpeaa)DE-He213 Best, Teo aut Grace, Dantria aut Nelms, Christen aut Shumaker, Ketia aut Romero-Severson, Jeanne aut Moses, Daniela aut Schuster, Stephan aut Staton, Margaret (orcid)0000-0003-2971-9353 aut Carlson, John aut Gwinn, Kimberly aut Enthalten in BMC genomics London : BioMed Central, 2000 21(2020), 1 vom: 14. Feb. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:21 year:2020 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12864-020-6549-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2020 1 14 02 |
allfieldsGer |
10.1186/s12864-020-6549-5 doi (DE-627)SPR027162915 (SPR)s12864-020-6549-5-e DE-627 ger DE-627 rakwb eng Soltani, Nourolah verfasserin aut Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2020 Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to $ O_{3} $, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to $ O_{3} $ stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the $ O_{3} $-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to $ O_{3} $. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis. Northern red oak (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Plant-pathogen interactions (dpeaa)DE-He213 Terpenoid (dpeaa)DE-He213 Mevalonic acid (dpeaa)DE-He213 Methylerythritol phosphate (dpeaa)DE-He213 Best, Teo aut Grace, Dantria aut Nelms, Christen aut Shumaker, Ketia aut Romero-Severson, Jeanne aut Moses, Daniela aut Schuster, Stephan aut Staton, Margaret (orcid)0000-0003-2971-9353 aut Carlson, John aut Gwinn, Kimberly aut Enthalten in BMC genomics London : BioMed Central, 2000 21(2020), 1 vom: 14. Feb. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:21 year:2020 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12864-020-6549-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2020 1 14 02 |
allfieldsSound |
10.1186/s12864-020-6549-5 doi (DE-627)SPR027162915 (SPR)s12864-020-6549-5-e DE-627 ger DE-627 rakwb eng Soltani, Nourolah verfasserin aut Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress 2020 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2020 Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to $ O_{3} $, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to $ O_{3} $ stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the $ O_{3} $-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to $ O_{3} $. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis. Northern red oak (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Plant-pathogen interactions (dpeaa)DE-He213 Terpenoid (dpeaa)DE-He213 Mevalonic acid (dpeaa)DE-He213 Methylerythritol phosphate (dpeaa)DE-He213 Best, Teo aut Grace, Dantria aut Nelms, Christen aut Shumaker, Ketia aut Romero-Severson, Jeanne aut Moses, Daniela aut Schuster, Stephan aut Staton, Margaret (orcid)0000-0003-2971-9353 aut Carlson, John aut Gwinn, Kimberly aut Enthalten in BMC genomics London : BioMed Central, 2000 21(2020), 1 vom: 14. Feb. (DE-627)326644954 (DE-600)2041499-7 1471-2164 nnns volume:21 year:2020 number:1 day:14 month:02 https://dx.doi.org/10.1186/s12864-020-6549-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 21 2020 1 14 02 |
language |
English |
source |
Enthalten in BMC genomics 21(2020), 1 vom: 14. Feb. volume:21 year:2020 number:1 day:14 month:02 |
sourceStr |
Enthalten in BMC genomics 21(2020), 1 vom: 14. Feb. volume:21 year:2020 number:1 day:14 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Northern red oak Transcriptome Plant-pathogen interactions Terpenoid Mevalonic acid Methylerythritol phosphate |
isfreeaccess_bool |
true |
container_title |
BMC genomics |
authorswithroles_txt_mv |
Soltani, Nourolah @@aut@@ Best, Teo @@aut@@ Grace, Dantria @@aut@@ Nelms, Christen @@aut@@ Shumaker, Ketia @@aut@@ Romero-Severson, Jeanne @@aut@@ Moses, Daniela @@aut@@ Schuster, Stephan @@aut@@ Staton, Margaret @@aut@@ Carlson, John @@aut@@ Gwinn, Kimberly @@aut@@ |
publishDateDaySort_date |
2020-02-14T00:00:00Z |
hierarchy_top_id |
326644954 |
id |
SPR027162915 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027162915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519221709.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-020-6549-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027162915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12864-020-6549-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Soltani, Nourolah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to $ O_{3} $, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to $ O_{3} $ stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the $ O_{3} $-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to $ O_{3} $. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Northern red oak</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant-pathogen interactions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Terpenoid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mevalonic acid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methylerythritol phosphate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Best, Teo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grace, Dantria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelms, Christen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shumaker, Ketia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Romero-Severson, Jeanne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moses, Daniela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schuster, Stephan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Staton, Margaret</subfield><subfield code="0">(orcid)0000-0003-2971-9353</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carlson, John</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gwinn, Kimberly</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">21(2020), 1 vom: 14. Feb.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12864-020-6549-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Soltani, Nourolah |
spellingShingle |
Soltani, Nourolah misc Northern red oak misc Transcriptome misc Plant-pathogen interactions misc Terpenoid misc Mevalonic acid misc Methylerythritol phosphate Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress |
authorStr |
Soltani, Nourolah |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644954 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2164 |
topic_title |
Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress Northern red oak (dpeaa)DE-He213 Transcriptome (dpeaa)DE-He213 Plant-pathogen interactions (dpeaa)DE-He213 Terpenoid (dpeaa)DE-He213 Mevalonic acid (dpeaa)DE-He213 Methylerythritol phosphate (dpeaa)DE-He213 |
topic |
misc Northern red oak misc Transcriptome misc Plant-pathogen interactions misc Terpenoid misc Mevalonic acid misc Methylerythritol phosphate |
topic_unstemmed |
misc Northern red oak misc Transcriptome misc Plant-pathogen interactions misc Terpenoid misc Mevalonic acid misc Methylerythritol phosphate |
topic_browse |
misc Northern red oak misc Transcriptome misc Plant-pathogen interactions misc Terpenoid misc Mevalonic acid misc Methylerythritol phosphate |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC genomics |
hierarchy_parent_id |
326644954 |
hierarchy_top_title |
BMC genomics |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644954 (DE-600)2041499-7 |
title |
Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress |
ctrlnum |
(DE-627)SPR027162915 (SPR)s12864-020-6549-5-e |
title_full |
Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress |
author_sort |
Soltani, Nourolah |
journal |
BMC genomics |
journalStr |
BMC genomics |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
author_browse |
Soltani, Nourolah Best, Teo Grace, Dantria Nelms, Christen Shumaker, Ketia Romero-Severson, Jeanne Moses, Daniela Schuster, Stephan Staton, Margaret Carlson, John Gwinn, Kimberly |
container_volume |
21 |
format_se |
Elektronische Aufsätze |
author-letter |
Soltani, Nourolah |
doi_str_mv |
10.1186/s12864-020-6549-5 |
normlink |
(ORCID)0000-0003-2971-9353 |
normlink_prefix_str_mv |
(orcid)0000-0003-2971-9353 |
title_sort |
transcriptome profiles of quercus rubra responding to increased $ o_{3} $ stress |
title_auth |
Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress |
abstract |
Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to $ O_{3} $, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to $ O_{3} $ stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the $ O_{3} $-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to $ O_{3} $. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis. © The Author(s). 2020 |
abstractGer |
Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to $ O_{3} $, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to $ O_{3} $ stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the $ O_{3} $-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to $ O_{3} $. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis. © The Author(s). 2020 |
abstract_unstemmed |
Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to $ O_{3} $, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to $ O_{3} $ stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the $ O_{3} $-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to $ O_{3} $. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis. © The Author(s). 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress |
url |
https://dx.doi.org/10.1186/s12864-020-6549-5 |
remote_bool |
true |
author2 |
Best, Teo Grace, Dantria Nelms, Christen Shumaker, Ketia Romero-Severson, Jeanne Moses, Daniela Schuster, Stephan Staton, Margaret Carlson, John Gwinn, Kimberly |
author2Str |
Best, Teo Grace, Dantria Nelms, Christen Shumaker, Ketia Romero-Severson, Jeanne Moses, Daniela Schuster, Stephan Staton, Margaret Carlson, John Gwinn, Kimberly |
ppnlink |
326644954 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12864-020-6549-5 |
up_date |
2024-07-04T00:40:35.162Z |
_version_ |
1803606960547823616 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027162915</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519221709.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2020 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12864-020-6549-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027162915</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12864-020-6549-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Soltani, Nourolah</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transcriptome profiles of Quercus rubra responding to increased $ O_{3} $ stress</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone ($ O_{3} $). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to $ O_{3} $, limited information is available on its responses to exogenous stimuli at the level of gene expression. Results RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to $ O_{3} $ stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the $ O_{3} $-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. Conclusion This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to $ O_{3} $. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Northern red oak</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transcriptome</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant-pathogen interactions</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Terpenoid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mevalonic acid</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Methylerythritol phosphate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Best, Teo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grace, Dantria</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nelms, Christen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shumaker, Ketia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Romero-Severson, Jeanne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moses, Daniela</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schuster, Stephan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Staton, Margaret</subfield><subfield code="0">(orcid)0000-0003-2971-9353</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carlson, John</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gwinn, Kimberly</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC genomics</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">21(2020), 1 vom: 14. Feb.</subfield><subfield code="w">(DE-627)326644954</subfield><subfield code="w">(DE-600)2041499-7</subfield><subfield code="x">1471-2164</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:1</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12864-020-6549-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2020</subfield><subfield code="e">1</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.4021635 |