Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus
Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will...
Ausführliche Beschreibung
Autor*in: |
Feng, Bo [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Feng et al. 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC microbiology - London : BioMed Central, 2001, 16(2016), 1 vom: 26. Apr. |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2016 ; number:1 ; day:26 ; month:04 |
Links: |
---|
DOI / URN: |
10.1186/s12866-016-0688-5 |
---|
Katalog-ID: |
SPR027202852 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027202852 | ||
003 | DE-627 | ||
005 | 20230519123432.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2016 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12866-016-0688-5 |2 doi | |
035 | |a (DE-627)SPR027202852 | ||
035 | |a (SPR)s12866-016-0688-5-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Feng, Bo |e verfasserin |4 aut | |
245 | 1 | 0 | |a Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Feng et al. 2016 | ||
520 | |a Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)). Results Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. Conclusions This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics. | ||
650 | 4 | |a Relative virulence gene expression |7 (dpeaa)DE-He213 | |
650 | 4 | |a Metabolic profiling |7 (dpeaa)DE-He213 | |
650 | 4 | |a Pearson’s correlation analysis |7 (dpeaa)DE-He213 | |
700 | 1 | |a Guo, Zhuoran |4 aut | |
700 | 1 | |a Zhang, Weijia |4 aut | |
700 | 1 | |a Pan, Yingjie |4 aut | |
700 | 1 | |a Zhao, Yong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC microbiology |d London : BioMed Central, 2001 |g 16(2016), 1 vom: 26. Apr. |w (DE-627)326644997 |w (DE-600)2041505-9 |x 1471-2180 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2016 |g number:1 |g day:26 |g month:04 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12866-016-0688-5 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 16 |j 2016 |e 1 |b 26 |c 04 |
author_variant |
b f bf z g zg w z wz y p yp y z yz |
---|---|
matchkey_str |
article:14712180:2016----::eaooeepneoeprtridcdiuecgnepesoitoeoyeopt |
hierarchy_sort_str |
2016 |
publishDate |
2016 |
allfields |
10.1186/s12866-016-0688-5 doi (DE-627)SPR027202852 (SPR)s12866-016-0688-5-e DE-627 ger DE-627 rakwb eng Feng, Bo verfasserin aut Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Feng et al. 2016 Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)). Results Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. Conclusions This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics. Relative virulence gene expression (dpeaa)DE-He213 Metabolic profiling (dpeaa)DE-He213 Pearson’s correlation analysis (dpeaa)DE-He213 Guo, Zhuoran aut Zhang, Weijia aut Pan, Yingjie aut Zhao, Yong aut Enthalten in BMC microbiology London : BioMed Central, 2001 16(2016), 1 vom: 26. Apr. (DE-627)326644997 (DE-600)2041505-9 1471-2180 nnns volume:16 year:2016 number:1 day:26 month:04 https://dx.doi.org/10.1186/s12866-016-0688-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2016 1 26 04 |
spelling |
10.1186/s12866-016-0688-5 doi (DE-627)SPR027202852 (SPR)s12866-016-0688-5-e DE-627 ger DE-627 rakwb eng Feng, Bo verfasserin aut Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Feng et al. 2016 Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)). Results Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. Conclusions This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics. Relative virulence gene expression (dpeaa)DE-He213 Metabolic profiling (dpeaa)DE-He213 Pearson’s correlation analysis (dpeaa)DE-He213 Guo, Zhuoran aut Zhang, Weijia aut Pan, Yingjie aut Zhao, Yong aut Enthalten in BMC microbiology London : BioMed Central, 2001 16(2016), 1 vom: 26. Apr. (DE-627)326644997 (DE-600)2041505-9 1471-2180 nnns volume:16 year:2016 number:1 day:26 month:04 https://dx.doi.org/10.1186/s12866-016-0688-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2016 1 26 04 |
allfields_unstemmed |
10.1186/s12866-016-0688-5 doi (DE-627)SPR027202852 (SPR)s12866-016-0688-5-e DE-627 ger DE-627 rakwb eng Feng, Bo verfasserin aut Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Feng et al. 2016 Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)). Results Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. Conclusions This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics. Relative virulence gene expression (dpeaa)DE-He213 Metabolic profiling (dpeaa)DE-He213 Pearson’s correlation analysis (dpeaa)DE-He213 Guo, Zhuoran aut Zhang, Weijia aut Pan, Yingjie aut Zhao, Yong aut Enthalten in BMC microbiology London : BioMed Central, 2001 16(2016), 1 vom: 26. Apr. (DE-627)326644997 (DE-600)2041505-9 1471-2180 nnns volume:16 year:2016 number:1 day:26 month:04 https://dx.doi.org/10.1186/s12866-016-0688-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2016 1 26 04 |
allfieldsGer |
10.1186/s12866-016-0688-5 doi (DE-627)SPR027202852 (SPR)s12866-016-0688-5-e DE-627 ger DE-627 rakwb eng Feng, Bo verfasserin aut Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Feng et al. 2016 Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)). Results Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. Conclusions This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics. Relative virulence gene expression (dpeaa)DE-He213 Metabolic profiling (dpeaa)DE-He213 Pearson’s correlation analysis (dpeaa)DE-He213 Guo, Zhuoran aut Zhang, Weijia aut Pan, Yingjie aut Zhao, Yong aut Enthalten in BMC microbiology London : BioMed Central, 2001 16(2016), 1 vom: 26. Apr. (DE-627)326644997 (DE-600)2041505-9 1471-2180 nnns volume:16 year:2016 number:1 day:26 month:04 https://dx.doi.org/10.1186/s12866-016-0688-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2016 1 26 04 |
allfieldsSound |
10.1186/s12866-016-0688-5 doi (DE-627)SPR027202852 (SPR)s12866-016-0688-5-e DE-627 ger DE-627 rakwb eng Feng, Bo verfasserin aut Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus 2016 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Feng et al. 2016 Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)). Results Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. Conclusions This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics. Relative virulence gene expression (dpeaa)DE-He213 Metabolic profiling (dpeaa)DE-He213 Pearson’s correlation analysis (dpeaa)DE-He213 Guo, Zhuoran aut Zhang, Weijia aut Pan, Yingjie aut Zhao, Yong aut Enthalten in BMC microbiology London : BioMed Central, 2001 16(2016), 1 vom: 26. Apr. (DE-627)326644997 (DE-600)2041505-9 1471-2180 nnns volume:16 year:2016 number:1 day:26 month:04 https://dx.doi.org/10.1186/s12866-016-0688-5 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 16 2016 1 26 04 |
language |
English |
source |
Enthalten in BMC microbiology 16(2016), 1 vom: 26. Apr. volume:16 year:2016 number:1 day:26 month:04 |
sourceStr |
Enthalten in BMC microbiology 16(2016), 1 vom: 26. Apr. volume:16 year:2016 number:1 day:26 month:04 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Relative virulence gene expression Metabolic profiling Pearson’s correlation analysis |
isfreeaccess_bool |
true |
container_title |
BMC microbiology |
authorswithroles_txt_mv |
Feng, Bo @@aut@@ Guo, Zhuoran @@aut@@ Zhang, Weijia @@aut@@ Pan, Yingjie @@aut@@ Zhao, Yong @@aut@@ |
publishDateDaySort_date |
2016-04-26T00:00:00Z |
hierarchy_top_id |
326644997 |
id |
SPR027202852 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027202852</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519123432.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12866-016-0688-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027202852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12866-016-0688-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Feng et al. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)). Results Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. Conclusions This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relative virulence gene expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic profiling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pearson’s correlation analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Zhuoran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Weijia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Yingjie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC microbiology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">16(2016), 1 vom: 26. Apr.</subfield><subfield code="w">(DE-627)326644997</subfield><subfield code="w">(DE-600)2041505-9</subfield><subfield code="x">1471-2180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12866-016-0688-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
author |
Feng, Bo |
spellingShingle |
Feng, Bo misc Relative virulence gene expression misc Metabolic profiling misc Pearson’s correlation analysis Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus |
authorStr |
Feng, Bo |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644997 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2180 |
topic_title |
Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus Relative virulence gene expression (dpeaa)DE-He213 Metabolic profiling (dpeaa)DE-He213 Pearson’s correlation analysis (dpeaa)DE-He213 |
topic |
misc Relative virulence gene expression misc Metabolic profiling misc Pearson’s correlation analysis |
topic_unstemmed |
misc Relative virulence gene expression misc Metabolic profiling misc Pearson’s correlation analysis |
topic_browse |
misc Relative virulence gene expression misc Metabolic profiling misc Pearson’s correlation analysis |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC microbiology |
hierarchy_parent_id |
326644997 |
hierarchy_top_title |
BMC microbiology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644997 (DE-600)2041505-9 |
title |
Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus |
ctrlnum |
(DE-627)SPR027202852 (SPR)s12866-016-0688-5-e |
title_full |
Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus |
author_sort |
Feng, Bo |
journal |
BMC microbiology |
journalStr |
BMC microbiology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
author_browse |
Feng, Bo Guo, Zhuoran Zhang, Weijia Pan, Yingjie Zhao, Yong |
container_volume |
16 |
format_se |
Elektronische Aufsätze |
author-letter |
Feng, Bo |
doi_str_mv |
10.1186/s12866-016-0688-5 |
title_sort |
metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic vibrio parahaemolyticus |
title_auth |
Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus |
abstract |
Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)). Results Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. Conclusions This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics. © Feng et al. 2016 |
abstractGer |
Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)). Results Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. Conclusions This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics. © Feng et al. 2016 |
abstract_unstemmed |
Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)). Results Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. Conclusions This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics. © Feng et al. 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus |
url |
https://dx.doi.org/10.1186/s12866-016-0688-5 |
remote_bool |
true |
author2 |
Guo, Zhuoran Zhang, Weijia Pan, Yingjie Zhao, Yong |
author2Str |
Guo, Zhuoran Zhang, Weijia Pan, Yingjie Zhao, Yong |
ppnlink |
326644997 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12866-016-0688-5 |
up_date |
2024-07-04T00:52:04.780Z |
_version_ |
1803607683663659008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027202852</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519123432.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2016 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12866-016-0688-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027202852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12866-016-0688-5-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feng, Bo</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Metabolome response to temperature-induced virulence gene expression in two genotypes of pathogenic Vibrio parahaemolyticus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Feng et al. 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Vibrio parahaemolyticus is a main causative agent of serious human seafood-borne gastroenteritis disease. Many researchers have investigated its pathogenesis by observing the alteration of its virulence factors in different conditions. It was previously known that culture conditions will influence the gene expression and the metabolic profile of V. parahaemolyticus, but little attention has been paid on the relationship between them. In this study, for the first time, the metabolomics response in relation to the expression of two major virulence genes, tdh and trh, induced at three temperatures (4, 25 and 37 °C) was examined in two genotypes of pathogenic Vibrio parahaemolyticus (ATCC33846 (tdh+/trh−/tlh+) and ATCC17802 (tdh−/trh+/tlh+)). Results Reverse transcription real-time PCR (RT-qPCR) analysis illustrated that the expression levels of tdh and trh induced at 25 °C in V. parahaemolyticus were significantly higher than those induced at 4 and 37 °C. Principal components analysis (PCA) based on the UPLC & Q-TOF MS data presented clearly distinct groups among the samples treated by different temperatures. Metabolic profiling demonstrated that 179 of 1,033 kinds of identified metabolites in ATCC33846 changed significantly (p <0.01) upon culturing at different temperatures, meanwhile 101 of 930 kinds of metabolites changed (p <0.01) in ATCC17802. Pearson’s correlation analysis highlighted the correlation between metabolites and virulence gene expression levels. At the threshold of | r | = 1, p <0.01, 12 kinds of metabolites showed extremely significant correlations with tdh expression, and 4 kinds of metabolites significantly correlated with trh expression. It is interesting that 3D, 7D, 11D-Phytanic acid showed the same trend with pyrophosphate, whose derivative could activate the degradation of phytanic acid. Several metabolites could be sorted into the same class by the method of chemical taxonomy, by assuming that they are involved in the same metabolic pathways. Conclusions This research can help to find biomarkers to monitor virulence gene expression, and can further help laboratory and clinical research of V. parahaemolyticus from the perspective of metabolomics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Relative virulence gene expression</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metabolic profiling</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Pearson’s correlation analysis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Zhuoran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Weijia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Yingjie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC microbiology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">16(2016), 1 vom: 26. Apr.</subfield><subfield code="w">(DE-627)326644997</subfield><subfield code="w">(DE-600)2041505-9</subfield><subfield code="x">1471-2180</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:04</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12866-016-0688-5</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2016</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">04</subfield></datafield></record></collection>
|
score |
7.4007034 |