Differences in dual-task performance and prefrontal cortex activation between younger and older adults
Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task re...
Ausführliche Beschreibung
Autor*in: |
Ohsugi, Hironori [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Ohsugi et al.; licensee BioMed Central Ltd. 2013 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC neuroscience - London : BioMed Central, 2000, 14(2013), 1 vom: 18. Jan. |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2013 ; number:1 ; day:18 ; month:01 |
Links: |
---|
DOI / URN: |
10.1186/1471-2202-14-10 |
---|
Katalog-ID: |
SPR027250628 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027250628 | ||
003 | DE-627 | ||
005 | 20230519191835.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2202-14-10 |2 doi | |
035 | |a (DE-627)SPR027250628 | ||
035 | |a (SPR)1471-2202-14-10-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Ohsugi, Hironori |e verfasserin |4 aut | |
245 | 1 | 0 | |a Differences in dual-task performance and prefrontal cortex activation between younger and older adults |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Ohsugi et al.; licensee BioMed Central Ltd. 2013 | ||
520 | |a Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly) participated in this study. Near-infrared spectroscopy (NIRS) was employed to measure PFC activation during a single-task (performing calculations or stepping) and dual-task (performing both single-tasks at once). Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B). Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb) measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive/attentional function. These findings suggest that the high cognitive load induced by dual-task activity generates increased PFC activity in older adults. However, this relationship appeared to be strongest in participants with better baseline attention and executive functions. | ||
650 | 4 | |a Dual-task |7 (dpeaa)DE-He213 | |
650 | 4 | |a Near-infrared spectroscopy |7 (dpeaa)DE-He213 | |
650 | 4 | |a Executive function |7 (dpeaa)DE-He213 | |
650 | 4 | |a Attentional function |7 (dpeaa)DE-He213 | |
700 | 1 | |a Ohgi, Shohei |4 aut | |
700 | 1 | |a Shigemori, Kenta |4 aut | |
700 | 1 | |a Schneider, Eric B |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC neuroscience |d London : BioMed Central, 2000 |g 14(2013), 1 vom: 18. Jan. |w (DE-627)326643648 |w (DE-600)2041344-0 |x 1471-2202 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2013 |g number:1 |g day:18 |g month:01 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2202-14-10 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2013 |e 1 |b 18 |c 01 |
author_variant |
h o ho s o so k s ks e b s eb ebs |
---|---|
matchkey_str |
article:14712202:2013----::ifrneidatspromnenpernacreatvtobte |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1186/1471-2202-14-10 doi (DE-627)SPR027250628 (SPR)1471-2202-14-10-e DE-627 ger DE-627 rakwb eng Ohsugi, Hironori verfasserin aut Differences in dual-task performance and prefrontal cortex activation between younger and older adults 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ohsugi et al.; licensee BioMed Central Ltd. 2013 Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly) participated in this study. Near-infrared spectroscopy (NIRS) was employed to measure PFC activation during a single-task (performing calculations or stepping) and dual-task (performing both single-tasks at once). Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B). Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb) measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive/attentional function. These findings suggest that the high cognitive load induced by dual-task activity generates increased PFC activity in older adults. However, this relationship appeared to be strongest in participants with better baseline attention and executive functions. Dual-task (dpeaa)DE-He213 Near-infrared spectroscopy (dpeaa)DE-He213 Executive function (dpeaa)DE-He213 Attentional function (dpeaa)DE-He213 Ohgi, Shohei aut Shigemori, Kenta aut Schneider, Eric B aut Enthalten in BMC neuroscience London : BioMed Central, 2000 14(2013), 1 vom: 18. Jan. (DE-627)326643648 (DE-600)2041344-0 1471-2202 nnns volume:14 year:2013 number:1 day:18 month:01 https://dx.doi.org/10.1186/1471-2202-14-10 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 18 01 |
spelling |
10.1186/1471-2202-14-10 doi (DE-627)SPR027250628 (SPR)1471-2202-14-10-e DE-627 ger DE-627 rakwb eng Ohsugi, Hironori verfasserin aut Differences in dual-task performance and prefrontal cortex activation between younger and older adults 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ohsugi et al.; licensee BioMed Central Ltd. 2013 Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly) participated in this study. Near-infrared spectroscopy (NIRS) was employed to measure PFC activation during a single-task (performing calculations or stepping) and dual-task (performing both single-tasks at once). Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B). Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb) measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive/attentional function. These findings suggest that the high cognitive load induced by dual-task activity generates increased PFC activity in older adults. However, this relationship appeared to be strongest in participants with better baseline attention and executive functions. Dual-task (dpeaa)DE-He213 Near-infrared spectroscopy (dpeaa)DE-He213 Executive function (dpeaa)DE-He213 Attentional function (dpeaa)DE-He213 Ohgi, Shohei aut Shigemori, Kenta aut Schneider, Eric B aut Enthalten in BMC neuroscience London : BioMed Central, 2000 14(2013), 1 vom: 18. Jan. (DE-627)326643648 (DE-600)2041344-0 1471-2202 nnns volume:14 year:2013 number:1 day:18 month:01 https://dx.doi.org/10.1186/1471-2202-14-10 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 18 01 |
allfields_unstemmed |
10.1186/1471-2202-14-10 doi (DE-627)SPR027250628 (SPR)1471-2202-14-10-e DE-627 ger DE-627 rakwb eng Ohsugi, Hironori verfasserin aut Differences in dual-task performance and prefrontal cortex activation between younger and older adults 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ohsugi et al.; licensee BioMed Central Ltd. 2013 Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly) participated in this study. Near-infrared spectroscopy (NIRS) was employed to measure PFC activation during a single-task (performing calculations or stepping) and dual-task (performing both single-tasks at once). Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B). Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb) measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive/attentional function. These findings suggest that the high cognitive load induced by dual-task activity generates increased PFC activity in older adults. However, this relationship appeared to be strongest in participants with better baseline attention and executive functions. Dual-task (dpeaa)DE-He213 Near-infrared spectroscopy (dpeaa)DE-He213 Executive function (dpeaa)DE-He213 Attentional function (dpeaa)DE-He213 Ohgi, Shohei aut Shigemori, Kenta aut Schneider, Eric B aut Enthalten in BMC neuroscience London : BioMed Central, 2000 14(2013), 1 vom: 18. Jan. (DE-627)326643648 (DE-600)2041344-0 1471-2202 nnns volume:14 year:2013 number:1 day:18 month:01 https://dx.doi.org/10.1186/1471-2202-14-10 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 18 01 |
allfieldsGer |
10.1186/1471-2202-14-10 doi (DE-627)SPR027250628 (SPR)1471-2202-14-10-e DE-627 ger DE-627 rakwb eng Ohsugi, Hironori verfasserin aut Differences in dual-task performance and prefrontal cortex activation between younger and older adults 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ohsugi et al.; licensee BioMed Central Ltd. 2013 Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly) participated in this study. Near-infrared spectroscopy (NIRS) was employed to measure PFC activation during a single-task (performing calculations or stepping) and dual-task (performing both single-tasks at once). Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B). Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb) measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive/attentional function. These findings suggest that the high cognitive load induced by dual-task activity generates increased PFC activity in older adults. However, this relationship appeared to be strongest in participants with better baseline attention and executive functions. Dual-task (dpeaa)DE-He213 Near-infrared spectroscopy (dpeaa)DE-He213 Executive function (dpeaa)DE-He213 Attentional function (dpeaa)DE-He213 Ohgi, Shohei aut Shigemori, Kenta aut Schneider, Eric B aut Enthalten in BMC neuroscience London : BioMed Central, 2000 14(2013), 1 vom: 18. Jan. (DE-627)326643648 (DE-600)2041344-0 1471-2202 nnns volume:14 year:2013 number:1 day:18 month:01 https://dx.doi.org/10.1186/1471-2202-14-10 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 18 01 |
allfieldsSound |
10.1186/1471-2202-14-10 doi (DE-627)SPR027250628 (SPR)1471-2202-14-10-e DE-627 ger DE-627 rakwb eng Ohsugi, Hironori verfasserin aut Differences in dual-task performance and prefrontal cortex activation between younger and older adults 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Ohsugi et al.; licensee BioMed Central Ltd. 2013 Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly) participated in this study. Near-infrared spectroscopy (NIRS) was employed to measure PFC activation during a single-task (performing calculations or stepping) and dual-task (performing both single-tasks at once). Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B). Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb) measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive/attentional function. These findings suggest that the high cognitive load induced by dual-task activity generates increased PFC activity in older adults. However, this relationship appeared to be strongest in participants with better baseline attention and executive functions. Dual-task (dpeaa)DE-He213 Near-infrared spectroscopy (dpeaa)DE-He213 Executive function (dpeaa)DE-He213 Attentional function (dpeaa)DE-He213 Ohgi, Shohei aut Shigemori, Kenta aut Schneider, Eric B aut Enthalten in BMC neuroscience London : BioMed Central, 2000 14(2013), 1 vom: 18. Jan. (DE-627)326643648 (DE-600)2041344-0 1471-2202 nnns volume:14 year:2013 number:1 day:18 month:01 https://dx.doi.org/10.1186/1471-2202-14-10 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 18 01 |
language |
English |
source |
Enthalten in BMC neuroscience 14(2013), 1 vom: 18. Jan. volume:14 year:2013 number:1 day:18 month:01 |
sourceStr |
Enthalten in BMC neuroscience 14(2013), 1 vom: 18. Jan. volume:14 year:2013 number:1 day:18 month:01 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dual-task Near-infrared spectroscopy Executive function Attentional function |
isfreeaccess_bool |
true |
container_title |
BMC neuroscience |
authorswithroles_txt_mv |
Ohsugi, Hironori @@aut@@ Ohgi, Shohei @@aut@@ Shigemori, Kenta @@aut@@ Schneider, Eric B @@aut@@ |
publishDateDaySort_date |
2013-01-18T00:00:00Z |
hierarchy_top_id |
326643648 |
id |
SPR027250628 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027250628</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519191835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2202-14-10</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027250628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2202-14-10-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ohsugi, Hironori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differences in dual-task performance and prefrontal cortex activation between younger and older adults</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Ohsugi et al.; licensee BioMed Central Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly) participated in this study. Near-infrared spectroscopy (NIRS) was employed to measure PFC activation during a single-task (performing calculations or stepping) and dual-task (performing both single-tasks at once). Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B). Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb) measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive/attentional function. These findings suggest that the high cognitive load induced by dual-task activity generates increased PFC activity in older adults. However, this relationship appeared to be strongest in participants with better baseline attention and executive functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual-task</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near-infrared spectroscopy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Executive function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attentional function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ohgi, Shohei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shigemori, Kenta</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Eric B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC neuroscience</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">14(2013), 1 vom: 18. Jan.</subfield><subfield code="w">(DE-627)326643648</subfield><subfield code="w">(DE-600)2041344-0</subfield><subfield code="x">1471-2202</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2202-14-10</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
author |
Ohsugi, Hironori |
spellingShingle |
Ohsugi, Hironori misc Dual-task misc Near-infrared spectroscopy misc Executive function misc Attentional function Differences in dual-task performance and prefrontal cortex activation between younger and older adults |
authorStr |
Ohsugi, Hironori |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643648 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2202 |
topic_title |
Differences in dual-task performance and prefrontal cortex activation between younger and older adults Dual-task (dpeaa)DE-He213 Near-infrared spectroscopy (dpeaa)DE-He213 Executive function (dpeaa)DE-He213 Attentional function (dpeaa)DE-He213 |
topic |
misc Dual-task misc Near-infrared spectroscopy misc Executive function misc Attentional function |
topic_unstemmed |
misc Dual-task misc Near-infrared spectroscopy misc Executive function misc Attentional function |
topic_browse |
misc Dual-task misc Near-infrared spectroscopy misc Executive function misc Attentional function |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC neuroscience |
hierarchy_parent_id |
326643648 |
hierarchy_top_title |
BMC neuroscience |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643648 (DE-600)2041344-0 |
title |
Differences in dual-task performance and prefrontal cortex activation between younger and older adults |
ctrlnum |
(DE-627)SPR027250628 (SPR)1471-2202-14-10-e |
title_full |
Differences in dual-task performance and prefrontal cortex activation between younger and older adults |
author_sort |
Ohsugi, Hironori |
journal |
BMC neuroscience |
journalStr |
BMC neuroscience |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Ohsugi, Hironori Ohgi, Shohei Shigemori, Kenta Schneider, Eric B |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Ohsugi, Hironori |
doi_str_mv |
10.1186/1471-2202-14-10 |
title_sort |
differences in dual-task performance and prefrontal cortex activation between younger and older adults |
title_auth |
Differences in dual-task performance and prefrontal cortex activation between younger and older adults |
abstract |
Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly) participated in this study. Near-infrared spectroscopy (NIRS) was employed to measure PFC activation during a single-task (performing calculations or stepping) and dual-task (performing both single-tasks at once). Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B). Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb) measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive/attentional function. These findings suggest that the high cognitive load induced by dual-task activity generates increased PFC activity in older adults. However, this relationship appeared to be strongest in participants with better baseline attention and executive functions. © Ohsugi et al.; licensee BioMed Central Ltd. 2013 |
abstractGer |
Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly) participated in this study. Near-infrared spectroscopy (NIRS) was employed to measure PFC activation during a single-task (performing calculations or stepping) and dual-task (performing both single-tasks at once). Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B). Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb) measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive/attentional function. These findings suggest that the high cognitive load induced by dual-task activity generates increased PFC activity in older adults. However, this relationship appeared to be strongest in participants with better baseline attention and executive functions. © Ohsugi et al.; licensee BioMed Central Ltd. 2013 |
abstract_unstemmed |
Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly) participated in this study. Near-infrared spectroscopy (NIRS) was employed to measure PFC activation during a single-task (performing calculations or stepping) and dual-task (performing both single-tasks at once). Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B). Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb) measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive/attentional function. These findings suggest that the high cognitive load induced by dual-task activity generates increased PFC activity in older adults. However, this relationship appeared to be strongest in participants with better baseline attention and executive functions. © Ohsugi et al.; licensee BioMed Central Ltd. 2013 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Differences in dual-task performance and prefrontal cortex activation between younger and older adults |
url |
https://dx.doi.org/10.1186/1471-2202-14-10 |
remote_bool |
true |
author2 |
Ohgi, Shohei Shigemori, Kenta Schneider, Eric B |
author2Str |
Ohgi, Shohei Shigemori, Kenta Schneider, Eric B |
ppnlink |
326643648 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2202-14-10 |
up_date |
2024-07-04T01:03:21.008Z |
_version_ |
1803608392740110336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027250628</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519191835.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2202-14-10</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027250628</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2202-14-10-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ohsugi, Hironori</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differences in dual-task performance and prefrontal cortex activation between younger and older adults</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Ohsugi et al.; licensee BioMed Central Ltd. 2013</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The purpose of this study was to examine task-related changes in prefrontal cortex (PFC) activity during a dual-task in both healthy young and older adults and compare patterns of activation between the age groups. We also sought to determine whether brain activation during a dual-task relates to executive/attentional function and how measured factors associated with both of these functions vary between older and younger adults. Results Thirty-five healthy volunteers (20 young and 15 elderly) participated in this study. Near-infrared spectroscopy (NIRS) was employed to measure PFC activation during a single-task (performing calculations or stepping) and dual-task (performing both single-tasks at once). Cognitive function was assessed in the older patients with the Trail-making test part B (TMT-B). Major outcomes were task performance, brain activation during task (oxygenated haemoglobin: Oxy-Hb) measured by NIRS, and TMT-B score. Mixed ANOVAs were used to compare task factors and age groups in task performance. Mixed ANOVAs also compared task factors, age group and time factors in task-induced changes in measured Oxy-Hb. Among the older participants, correlations between the TMT-B score and Oxy-Hb values measured in each single-task and in the dual-task were examined using a Pearson correlation coefficient. Oxy-Hb values were significantly increased in both the calculation task and the dual-task within patients in both age groups. However, the Oxy-Hb values associated with there were higher in the older group during the post-task period for the dual-task. Also, there were significant negative correlations between both task-performance accuracy and Oxy-Hb values during the dual-task and participant TMT-B scores. Conclusions Older adults demonstrated age-specific PFC activation in response to dual-task challenge. There was also a significant negative correlation between PFC activation during dual-task and executive/attentional function. These findings suggest that the high cognitive load induced by dual-task activity generates increased PFC activity in older adults. However, this relationship appeared to be strongest in participants with better baseline attention and executive functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dual-task</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near-infrared spectroscopy</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Executive function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Attentional function</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ohgi, Shohei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shigemori, Kenta</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schneider, Eric B</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC neuroscience</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">14(2013), 1 vom: 18. Jan.</subfield><subfield code="w">(DE-627)326643648</subfield><subfield code="w">(DE-600)2041344-0</subfield><subfield code="x">1471-2202</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:18</subfield><subfield code="g">month:01</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2202-14-10</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">18</subfield><subfield code="c">01</subfield></datafield></record></collection>
|
score |
7.3996477 |