Investigating the impact of electrical stimulation temporal distribution on cortical network responses
Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to e...
Ausführliche Beschreibung
Autor*in: |
Scarsi, Francesca [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC neuroscience - London : BioMed Central, 2000, 18(2017), 1 vom: 12. Juni |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2017 ; number:1 ; day:12 ; month:06 |
Links: |
---|
DOI / URN: |
10.1186/s12868-017-0366-z |
---|
Katalog-ID: |
SPR027266281 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027266281 | ||
003 | DE-627 | ||
005 | 20230519232226.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12868-017-0366-z |2 doi | |
035 | |a (DE-627)SPR027266281 | ||
035 | |a (SPR)s12868-017-0366-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Scarsi, Francesca |e verfasserin |4 aut | |
245 | 1 | 0 | |a Investigating the impact of electrical stimulation temporal distribution on cortical network responses |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s) 2017 | ||
520 | |a Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. Results In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. Conclusions Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes. | ||
650 | 4 | |a Cortical network |7 (dpeaa)DE-He213 | |
650 | 4 | |a Electrical stimulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Micro-electrode array |7 (dpeaa)DE-He213 | |
650 | 4 | |a Scale-free |7 (dpeaa)DE-He213 | |
650 | 4 | |a Noise |7 (dpeaa)DE-He213 | |
650 | 4 | |a Response reliability |7 (dpeaa)DE-He213 | |
700 | 1 | |a Tessadori, Jacopo |4 aut | |
700 | 1 | |a Chiappalone, Michela |0 (orcid)0000-0003-1427-5147 |4 aut | |
700 | 1 | |a Pasquale, Valentina |0 (orcid)0000-0002-4499-9536 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC neuroscience |d London : BioMed Central, 2000 |g 18(2017), 1 vom: 12. Juni |w (DE-627)326643648 |w (DE-600)2041344-0 |x 1471-2202 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2017 |g number:1 |g day:12 |g month:06 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12868-017-0366-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2017 |e 1 |b 12 |c 06 |
author_variant |
f s fs j t jt m c mc v p vp |
---|---|
matchkey_str |
article:14712202:2017----::netgtntematflcrcltmltotmoadsrbtoo |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1186/s12868-017-0366-z doi (DE-627)SPR027266281 (SPR)s12868-017-0366-z-e DE-627 ger DE-627 rakwb eng Scarsi, Francesca verfasserin aut Investigating the impact of electrical stimulation temporal distribution on cortical network responses 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. Results In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. Conclusions Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes. Cortical network (dpeaa)DE-He213 Electrical stimulation (dpeaa)DE-He213 Micro-electrode array (dpeaa)DE-He213 Scale-free (dpeaa)DE-He213 Noise (dpeaa)DE-He213 Response reliability (dpeaa)DE-He213 Tessadori, Jacopo aut Chiappalone, Michela (orcid)0000-0003-1427-5147 aut Pasquale, Valentina (orcid)0000-0002-4499-9536 aut Enthalten in BMC neuroscience London : BioMed Central, 2000 18(2017), 1 vom: 12. Juni (DE-627)326643648 (DE-600)2041344-0 1471-2202 nnns volume:18 year:2017 number:1 day:12 month:06 https://dx.doi.org/10.1186/s12868-017-0366-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2017 1 12 06 |
spelling |
10.1186/s12868-017-0366-z doi (DE-627)SPR027266281 (SPR)s12868-017-0366-z-e DE-627 ger DE-627 rakwb eng Scarsi, Francesca verfasserin aut Investigating the impact of electrical stimulation temporal distribution on cortical network responses 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. Results In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. Conclusions Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes. Cortical network (dpeaa)DE-He213 Electrical stimulation (dpeaa)DE-He213 Micro-electrode array (dpeaa)DE-He213 Scale-free (dpeaa)DE-He213 Noise (dpeaa)DE-He213 Response reliability (dpeaa)DE-He213 Tessadori, Jacopo aut Chiappalone, Michela (orcid)0000-0003-1427-5147 aut Pasquale, Valentina (orcid)0000-0002-4499-9536 aut Enthalten in BMC neuroscience London : BioMed Central, 2000 18(2017), 1 vom: 12. Juni (DE-627)326643648 (DE-600)2041344-0 1471-2202 nnns volume:18 year:2017 number:1 day:12 month:06 https://dx.doi.org/10.1186/s12868-017-0366-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2017 1 12 06 |
allfields_unstemmed |
10.1186/s12868-017-0366-z doi (DE-627)SPR027266281 (SPR)s12868-017-0366-z-e DE-627 ger DE-627 rakwb eng Scarsi, Francesca verfasserin aut Investigating the impact of electrical stimulation temporal distribution on cortical network responses 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. Results In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. Conclusions Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes. Cortical network (dpeaa)DE-He213 Electrical stimulation (dpeaa)DE-He213 Micro-electrode array (dpeaa)DE-He213 Scale-free (dpeaa)DE-He213 Noise (dpeaa)DE-He213 Response reliability (dpeaa)DE-He213 Tessadori, Jacopo aut Chiappalone, Michela (orcid)0000-0003-1427-5147 aut Pasquale, Valentina (orcid)0000-0002-4499-9536 aut Enthalten in BMC neuroscience London : BioMed Central, 2000 18(2017), 1 vom: 12. Juni (DE-627)326643648 (DE-600)2041344-0 1471-2202 nnns volume:18 year:2017 number:1 day:12 month:06 https://dx.doi.org/10.1186/s12868-017-0366-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2017 1 12 06 |
allfieldsGer |
10.1186/s12868-017-0366-z doi (DE-627)SPR027266281 (SPR)s12868-017-0366-z-e DE-627 ger DE-627 rakwb eng Scarsi, Francesca verfasserin aut Investigating the impact of electrical stimulation temporal distribution on cortical network responses 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. Results In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. Conclusions Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes. Cortical network (dpeaa)DE-He213 Electrical stimulation (dpeaa)DE-He213 Micro-electrode array (dpeaa)DE-He213 Scale-free (dpeaa)DE-He213 Noise (dpeaa)DE-He213 Response reliability (dpeaa)DE-He213 Tessadori, Jacopo aut Chiappalone, Michela (orcid)0000-0003-1427-5147 aut Pasquale, Valentina (orcid)0000-0002-4499-9536 aut Enthalten in BMC neuroscience London : BioMed Central, 2000 18(2017), 1 vom: 12. Juni (DE-627)326643648 (DE-600)2041344-0 1471-2202 nnns volume:18 year:2017 number:1 day:12 month:06 https://dx.doi.org/10.1186/s12868-017-0366-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2017 1 12 06 |
allfieldsSound |
10.1186/s12868-017-0366-z doi (DE-627)SPR027266281 (SPR)s12868-017-0366-z-e DE-627 ger DE-627 rakwb eng Scarsi, Francesca verfasserin aut Investigating the impact of electrical stimulation temporal distribution on cortical network responses 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s) 2017 Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. Results In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. Conclusions Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes. Cortical network (dpeaa)DE-He213 Electrical stimulation (dpeaa)DE-He213 Micro-electrode array (dpeaa)DE-He213 Scale-free (dpeaa)DE-He213 Noise (dpeaa)DE-He213 Response reliability (dpeaa)DE-He213 Tessadori, Jacopo aut Chiappalone, Michela (orcid)0000-0003-1427-5147 aut Pasquale, Valentina (orcid)0000-0002-4499-9536 aut Enthalten in BMC neuroscience London : BioMed Central, 2000 18(2017), 1 vom: 12. Juni (DE-627)326643648 (DE-600)2041344-0 1471-2202 nnns volume:18 year:2017 number:1 day:12 month:06 https://dx.doi.org/10.1186/s12868-017-0366-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2017 1 12 06 |
language |
English |
source |
Enthalten in BMC neuroscience 18(2017), 1 vom: 12. Juni volume:18 year:2017 number:1 day:12 month:06 |
sourceStr |
Enthalten in BMC neuroscience 18(2017), 1 vom: 12. Juni volume:18 year:2017 number:1 day:12 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cortical network Electrical stimulation Micro-electrode array Scale-free Noise Response reliability |
isfreeaccess_bool |
true |
container_title |
BMC neuroscience |
authorswithroles_txt_mv |
Scarsi, Francesca @@aut@@ Tessadori, Jacopo @@aut@@ Chiappalone, Michela @@aut@@ Pasquale, Valentina @@aut@@ |
publishDateDaySort_date |
2017-06-12T00:00:00Z |
hierarchy_top_id |
326643648 |
id |
SPR027266281 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027266281</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519232226.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12868-017-0366-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027266281</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12868-017-0366-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scarsi, Francesca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigating the impact of electrical stimulation temporal distribution on cortical network responses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. Results In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. Conclusions Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cortical network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical stimulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Micro-electrode array</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale-free</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Response reliability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tessadori, Jacopo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chiappalone, Michela</subfield><subfield code="0">(orcid)0000-0003-1427-5147</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pasquale, Valentina</subfield><subfield code="0">(orcid)0000-0002-4499-9536</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC neuroscience</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">18(2017), 1 vom: 12. Juni</subfield><subfield code="w">(DE-627)326643648</subfield><subfield code="w">(DE-600)2041344-0</subfield><subfield code="x">1471-2202</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12868-017-0366-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Scarsi, Francesca |
spellingShingle |
Scarsi, Francesca misc Cortical network misc Electrical stimulation misc Micro-electrode array misc Scale-free misc Noise misc Response reliability Investigating the impact of electrical stimulation temporal distribution on cortical network responses |
authorStr |
Scarsi, Francesca |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643648 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2202 |
topic_title |
Investigating the impact of electrical stimulation temporal distribution on cortical network responses Cortical network (dpeaa)DE-He213 Electrical stimulation (dpeaa)DE-He213 Micro-electrode array (dpeaa)DE-He213 Scale-free (dpeaa)DE-He213 Noise (dpeaa)DE-He213 Response reliability (dpeaa)DE-He213 |
topic |
misc Cortical network misc Electrical stimulation misc Micro-electrode array misc Scale-free misc Noise misc Response reliability |
topic_unstemmed |
misc Cortical network misc Electrical stimulation misc Micro-electrode array misc Scale-free misc Noise misc Response reliability |
topic_browse |
misc Cortical network misc Electrical stimulation misc Micro-electrode array misc Scale-free misc Noise misc Response reliability |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC neuroscience |
hierarchy_parent_id |
326643648 |
hierarchy_top_title |
BMC neuroscience |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643648 (DE-600)2041344-0 |
title |
Investigating the impact of electrical stimulation temporal distribution on cortical network responses |
ctrlnum |
(DE-627)SPR027266281 (SPR)s12868-017-0366-z-e |
title_full |
Investigating the impact of electrical stimulation temporal distribution on cortical network responses |
author_sort |
Scarsi, Francesca |
journal |
BMC neuroscience |
journalStr |
BMC neuroscience |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Scarsi, Francesca Tessadori, Jacopo Chiappalone, Michela Pasquale, Valentina |
container_volume |
18 |
format_se |
Elektronische Aufsätze |
author-letter |
Scarsi, Francesca |
doi_str_mv |
10.1186/s12868-017-0366-z |
normlink |
(ORCID)0000-0003-1427-5147 (ORCID)0000-0002-4499-9536 |
normlink_prefix_str_mv |
(orcid)0000-0003-1427-5147 (orcid)0000-0002-4499-9536 |
title_sort |
investigating the impact of electrical stimulation temporal distribution on cortical network responses |
title_auth |
Investigating the impact of electrical stimulation temporal distribution on cortical network responses |
abstract |
Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. Results In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. Conclusions Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes. © The Author(s) 2017 |
abstractGer |
Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. Results In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. Conclusions Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes. © The Author(s) 2017 |
abstract_unstemmed |
Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. Results In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. Conclusions Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes. © The Author(s) 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Investigating the impact of electrical stimulation temporal distribution on cortical network responses |
url |
https://dx.doi.org/10.1186/s12868-017-0366-z |
remote_bool |
true |
author2 |
Tessadori, Jacopo Chiappalone, Michela Pasquale, Valentina |
author2Str |
Tessadori, Jacopo Chiappalone, Michela Pasquale, Valentina |
ppnlink |
326643648 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12868-017-0366-z |
up_date |
2024-07-04T01:06:32.297Z |
_version_ |
1803608593320116224 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027266281</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519232226.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12868-017-0366-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027266281</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12868-017-0366-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Scarsi, Francesca</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Investigating the impact of electrical stimulation temporal distribution on cortical network responses</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The brain is continuously targeted by a wealth of stimuli with complex spatio-temporal patterns and has presumably evolved in order to cope with those inputs in an optimal way. Previous studies investigating the response capabilities of either single neurons or intact sensory systems to external stimulation demonstrated that stimuli temporal distribution is an important, if often overlooked, parameter. Results In this study we investigated how cortical networks plated over micro-electrode arrays respond to different stimulation sequences in which inter-pulse intervals followed a 1/fβ distribution, for different values of β ranging from 0 to ∞. Cross-correlation analysis revealed that network activity preferentially synchronizes with external input sequences featuring β closer to 1 and, in any case, never for regular (i.e. fixed-frequency) stimulation sequences. We then tested the interplay between different average stimulation frequencies (based on the intrinsic firing/bursting frequency of the network) for two selected values of β, i.e. 1 (scale free) and ∞ (regular). In general, we observed no preference for stimulation frequencies matching the endogenous rhythms of the network. Moreover, we found that in case of regular stimulation the capability of the network to follow the stimulation sequence was negatively correlated to the absolute stimulation frequency, whereas using scale-free stimulation cross-correlation between input and output sequences was independent from average input frequency. Conclusions Our results point out that the preference for a scale-free distribution of the stimuli is observed also at network level and should be taken into account in designing more efficient protocols for neuromodulation purposes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cortical network</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical stimulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Micro-electrode array</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scale-free</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Noise</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Response reliability</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tessadori, Jacopo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chiappalone, Michela</subfield><subfield code="0">(orcid)0000-0003-1427-5147</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pasquale, Valentina</subfield><subfield code="0">(orcid)0000-0002-4499-9536</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC neuroscience</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">18(2017), 1 vom: 12. Juni</subfield><subfield code="w">(DE-627)326643648</subfield><subfield code="w">(DE-600)2041344-0</subfield><subfield code="x">1471-2202</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:12</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12868-017-0366-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">12</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.398863 |