Improving salt tolerance in potato through overexpression of AtHKT1 gene
Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the...
Ausführliche Beschreibung
Autor*in: |
Wang, Li [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC plant biology - London : BioMed Central, 2001, 19(2019), 1 vom: 16. Aug. |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2019 ; number:1 ; day:16 ; month:08 |
Links: |
---|
DOI / URN: |
10.1186/s12870-019-1963-z |
---|
Katalog-ID: |
SPR027312364 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027312364 | ||
003 | DE-627 | ||
005 | 20230519192322.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12870-019-1963-z |2 doi | |
035 | |a (DE-627)SPR027312364 | ||
035 | |a (SPR)s12870-019-1963-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wang, Li |e verfasserin |0 (orcid)0000-0002-6937-7813 |4 aut | |
245 | 1 | 0 | |a Improving salt tolerance in potato through overexpression of AtHKT1 gene |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2019 | ||
520 | |a Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing $ Na^{+} $ content and improving $ K^{+} $/$ Na^{+} $ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol $ L^{− 1} $ NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. Conclusions We conclude that the constitutive overexpression of AtHKT1 reduces $ Na^{+} $ accumulation in potato leaves and promotes the $ K^{+} $/$ Na^{+} $ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity. | ||
650 | 4 | |a gene |7 (dpeaa)DE-He213 | |
650 | 4 | |a K |7 (dpeaa)DE-He213 | |
650 | 4 | |a /Na |7 (dpeaa)DE-He213 | |
650 | 4 | |a ratio |7 (dpeaa)DE-He213 | |
650 | 4 | |a Photosynthetic rate |7 (dpeaa)DE-He213 | |
650 | 4 | |a Stomatal conductance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Transpiration rate |7 (dpeaa)DE-He213 | |
700 | 1 | |a Liu, Yuhui |4 aut | |
700 | 1 | |a Li, Dan |4 aut | |
700 | 1 | |a Feng, Shoujiang |4 aut | |
700 | 1 | |a Yang, Jiangwei |4 aut | |
700 | 1 | |a Zhang, Jingjing |4 aut | |
700 | 1 | |a Zhang, Junlian |0 (orcid)0000-0001-8093-5495 |4 aut | |
700 | 1 | |a Wang, Di |4 aut | |
700 | 1 | |a Gan, Yantai |0 (orcid)0000-0002-9074-0357 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC plant biology |d London : BioMed Central, 2001 |g 19(2019), 1 vom: 16. Aug. |w (DE-627)335489060 |w (DE-600)2059868-3 |x 1471-2229 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2019 |g number:1 |g day:16 |g month:08 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12870-019-1963-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_224 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2019 |e 1 |b 16 |c 08 |
author_variant |
l w lw y l yl d l dl s f sf j y jy j z jz j z jz d w dw y g yg |
---|---|
matchkey_str |
article:14712229:2019----::mrvnsltlrnenoaohogoeep |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1186/s12870-019-1963-z doi (DE-627)SPR027312364 (SPR)s12870-019-1963-z-e DE-627 ger DE-627 rakwb eng Wang, Li verfasserin (orcid)0000-0002-6937-7813 aut Improving salt tolerance in potato through overexpression of AtHKT1 gene 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing $ Na^{+} $ content and improving $ K^{+} $/$ Na^{+} $ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol $ L^{− 1} $ NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. Conclusions We conclude that the constitutive overexpression of AtHKT1 reduces $ Na^{+} $ accumulation in potato leaves and promotes the $ K^{+} $/$ Na^{+} $ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity. gene (dpeaa)DE-He213 K (dpeaa)DE-He213 /Na (dpeaa)DE-He213 ratio (dpeaa)DE-He213 Photosynthetic rate (dpeaa)DE-He213 Stomatal conductance (dpeaa)DE-He213 Transpiration rate (dpeaa)DE-He213 Liu, Yuhui aut Li, Dan aut Feng, Shoujiang aut Yang, Jiangwei aut Zhang, Jingjing aut Zhang, Junlian (orcid)0000-0001-8093-5495 aut Wang, Di aut Gan, Yantai (orcid)0000-0002-9074-0357 aut Enthalten in BMC plant biology London : BioMed Central, 2001 19(2019), 1 vom: 16. Aug. (DE-627)335489060 (DE-600)2059868-3 1471-2229 nnns volume:19 year:2019 number:1 day:16 month:08 https://dx.doi.org/10.1186/s12870-019-1963-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 1 16 08 |
spelling |
10.1186/s12870-019-1963-z doi (DE-627)SPR027312364 (SPR)s12870-019-1963-z-e DE-627 ger DE-627 rakwb eng Wang, Li verfasserin (orcid)0000-0002-6937-7813 aut Improving salt tolerance in potato through overexpression of AtHKT1 gene 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing $ Na^{+} $ content and improving $ K^{+} $/$ Na^{+} $ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol $ L^{− 1} $ NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. Conclusions We conclude that the constitutive overexpression of AtHKT1 reduces $ Na^{+} $ accumulation in potato leaves and promotes the $ K^{+} $/$ Na^{+} $ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity. gene (dpeaa)DE-He213 K (dpeaa)DE-He213 /Na (dpeaa)DE-He213 ratio (dpeaa)DE-He213 Photosynthetic rate (dpeaa)DE-He213 Stomatal conductance (dpeaa)DE-He213 Transpiration rate (dpeaa)DE-He213 Liu, Yuhui aut Li, Dan aut Feng, Shoujiang aut Yang, Jiangwei aut Zhang, Jingjing aut Zhang, Junlian (orcid)0000-0001-8093-5495 aut Wang, Di aut Gan, Yantai (orcid)0000-0002-9074-0357 aut Enthalten in BMC plant biology London : BioMed Central, 2001 19(2019), 1 vom: 16. Aug. (DE-627)335489060 (DE-600)2059868-3 1471-2229 nnns volume:19 year:2019 number:1 day:16 month:08 https://dx.doi.org/10.1186/s12870-019-1963-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 1 16 08 |
allfields_unstemmed |
10.1186/s12870-019-1963-z doi (DE-627)SPR027312364 (SPR)s12870-019-1963-z-e DE-627 ger DE-627 rakwb eng Wang, Li verfasserin (orcid)0000-0002-6937-7813 aut Improving salt tolerance in potato through overexpression of AtHKT1 gene 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing $ Na^{+} $ content and improving $ K^{+} $/$ Na^{+} $ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol $ L^{− 1} $ NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. Conclusions We conclude that the constitutive overexpression of AtHKT1 reduces $ Na^{+} $ accumulation in potato leaves and promotes the $ K^{+} $/$ Na^{+} $ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity. gene (dpeaa)DE-He213 K (dpeaa)DE-He213 /Na (dpeaa)DE-He213 ratio (dpeaa)DE-He213 Photosynthetic rate (dpeaa)DE-He213 Stomatal conductance (dpeaa)DE-He213 Transpiration rate (dpeaa)DE-He213 Liu, Yuhui aut Li, Dan aut Feng, Shoujiang aut Yang, Jiangwei aut Zhang, Jingjing aut Zhang, Junlian (orcid)0000-0001-8093-5495 aut Wang, Di aut Gan, Yantai (orcid)0000-0002-9074-0357 aut Enthalten in BMC plant biology London : BioMed Central, 2001 19(2019), 1 vom: 16. Aug. (DE-627)335489060 (DE-600)2059868-3 1471-2229 nnns volume:19 year:2019 number:1 day:16 month:08 https://dx.doi.org/10.1186/s12870-019-1963-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 1 16 08 |
allfieldsGer |
10.1186/s12870-019-1963-z doi (DE-627)SPR027312364 (SPR)s12870-019-1963-z-e DE-627 ger DE-627 rakwb eng Wang, Li verfasserin (orcid)0000-0002-6937-7813 aut Improving salt tolerance in potato through overexpression of AtHKT1 gene 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing $ Na^{+} $ content and improving $ K^{+} $/$ Na^{+} $ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol $ L^{− 1} $ NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. Conclusions We conclude that the constitutive overexpression of AtHKT1 reduces $ Na^{+} $ accumulation in potato leaves and promotes the $ K^{+} $/$ Na^{+} $ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity. gene (dpeaa)DE-He213 K (dpeaa)DE-He213 /Na (dpeaa)DE-He213 ratio (dpeaa)DE-He213 Photosynthetic rate (dpeaa)DE-He213 Stomatal conductance (dpeaa)DE-He213 Transpiration rate (dpeaa)DE-He213 Liu, Yuhui aut Li, Dan aut Feng, Shoujiang aut Yang, Jiangwei aut Zhang, Jingjing aut Zhang, Junlian (orcid)0000-0001-8093-5495 aut Wang, Di aut Gan, Yantai (orcid)0000-0002-9074-0357 aut Enthalten in BMC plant biology London : BioMed Central, 2001 19(2019), 1 vom: 16. Aug. (DE-627)335489060 (DE-600)2059868-3 1471-2229 nnns volume:19 year:2019 number:1 day:16 month:08 https://dx.doi.org/10.1186/s12870-019-1963-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 1 16 08 |
allfieldsSound |
10.1186/s12870-019-1963-z doi (DE-627)SPR027312364 (SPR)s12870-019-1963-z-e DE-627 ger DE-627 rakwb eng Wang, Li verfasserin (orcid)0000-0002-6937-7813 aut Improving salt tolerance in potato through overexpression of AtHKT1 gene 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing $ Na^{+} $ content and improving $ K^{+} $/$ Na^{+} $ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol $ L^{− 1} $ NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. Conclusions We conclude that the constitutive overexpression of AtHKT1 reduces $ Na^{+} $ accumulation in potato leaves and promotes the $ K^{+} $/$ Na^{+} $ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity. gene (dpeaa)DE-He213 K (dpeaa)DE-He213 /Na (dpeaa)DE-He213 ratio (dpeaa)DE-He213 Photosynthetic rate (dpeaa)DE-He213 Stomatal conductance (dpeaa)DE-He213 Transpiration rate (dpeaa)DE-He213 Liu, Yuhui aut Li, Dan aut Feng, Shoujiang aut Yang, Jiangwei aut Zhang, Jingjing aut Zhang, Junlian (orcid)0000-0001-8093-5495 aut Wang, Di aut Gan, Yantai (orcid)0000-0002-9074-0357 aut Enthalten in BMC plant biology London : BioMed Central, 2001 19(2019), 1 vom: 16. Aug. (DE-627)335489060 (DE-600)2059868-3 1471-2229 nnns volume:19 year:2019 number:1 day:16 month:08 https://dx.doi.org/10.1186/s12870-019-1963-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 1 16 08 |
language |
English |
source |
Enthalten in BMC plant biology 19(2019), 1 vom: 16. Aug. volume:19 year:2019 number:1 day:16 month:08 |
sourceStr |
Enthalten in BMC plant biology 19(2019), 1 vom: 16. Aug. volume:19 year:2019 number:1 day:16 month:08 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
gene K /Na ratio Photosynthetic rate Stomatal conductance Transpiration rate |
isfreeaccess_bool |
true |
container_title |
BMC plant biology |
authorswithroles_txt_mv |
Wang, Li @@aut@@ Liu, Yuhui @@aut@@ Li, Dan @@aut@@ Feng, Shoujiang @@aut@@ Yang, Jiangwei @@aut@@ Zhang, Jingjing @@aut@@ Zhang, Junlian @@aut@@ Wang, Di @@aut@@ Gan, Yantai @@aut@@ |
publishDateDaySort_date |
2019-08-16T00:00:00Z |
hierarchy_top_id |
335489060 |
id |
SPR027312364 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027312364</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519192322.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12870-019-1963-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027312364</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12870-019-1963-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6937-7813</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving salt tolerance in potato through overexpression of AtHKT1 gene</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing $ Na^{+} $ content and improving $ K^{+} $/$ Na^{+} $ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol $ L^{− 1} $ NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. Conclusions We conclude that the constitutive overexpression of AtHKT1 reduces $ Na^{+} $ accumulation in potato leaves and promotes the $ K^{+} $/$ Na^{+} $ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gene</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">/Na</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ratio</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photosynthetic rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stomatal conductance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transpiration rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yuhui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Dan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Shoujiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jiangwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jingjing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junlian</subfield><subfield code="0">(orcid)0000-0001-8093-5495</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Di</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gan, Yantai</subfield><subfield code="0">(orcid)0000-0002-9074-0357</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC plant biology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">19(2019), 1 vom: 16. Aug.</subfield><subfield code="w">(DE-627)335489060</subfield><subfield code="w">(DE-600)2059868-3</subfield><subfield code="x">1471-2229</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:16</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12870-019-1963-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">16</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
author |
Wang, Li |
spellingShingle |
Wang, Li misc gene misc K misc /Na misc ratio misc Photosynthetic rate misc Stomatal conductance misc Transpiration rate Improving salt tolerance in potato through overexpression of AtHKT1 gene |
authorStr |
Wang, Li |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)335489060 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2229 |
topic_title |
Improving salt tolerance in potato through overexpression of AtHKT1 gene gene (dpeaa)DE-He213 K (dpeaa)DE-He213 /Na (dpeaa)DE-He213 ratio (dpeaa)DE-He213 Photosynthetic rate (dpeaa)DE-He213 Stomatal conductance (dpeaa)DE-He213 Transpiration rate (dpeaa)DE-He213 |
topic |
misc gene misc K misc /Na misc ratio misc Photosynthetic rate misc Stomatal conductance misc Transpiration rate |
topic_unstemmed |
misc gene misc K misc /Na misc ratio misc Photosynthetic rate misc Stomatal conductance misc Transpiration rate |
topic_browse |
misc gene misc K misc /Na misc ratio misc Photosynthetic rate misc Stomatal conductance misc Transpiration rate |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC plant biology |
hierarchy_parent_id |
335489060 |
hierarchy_top_title |
BMC plant biology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)335489060 (DE-600)2059868-3 |
title |
Improving salt tolerance in potato through overexpression of AtHKT1 gene |
ctrlnum |
(DE-627)SPR027312364 (SPR)s12870-019-1963-z-e |
title_full |
Improving salt tolerance in potato through overexpression of AtHKT1 gene |
author_sort |
Wang, Li |
journal |
BMC plant biology |
journalStr |
BMC plant biology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Wang, Li Liu, Yuhui Li, Dan Feng, Shoujiang Yang, Jiangwei Zhang, Jingjing Zhang, Junlian Wang, Di Gan, Yantai |
container_volume |
19 |
format_se |
Elektronische Aufsätze |
author-letter |
Wang, Li |
doi_str_mv |
10.1186/s12870-019-1963-z |
normlink |
(ORCID)0000-0002-6937-7813 (ORCID)0000-0001-8093-5495 (ORCID)0000-0002-9074-0357 |
normlink_prefix_str_mv |
(orcid)0000-0002-6937-7813 (orcid)0000-0001-8093-5495 (orcid)0000-0002-9074-0357 |
title_sort |
improving salt tolerance in potato through overexpression of athkt1 gene |
title_auth |
Improving salt tolerance in potato through overexpression of AtHKT1 gene |
abstract |
Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing $ Na^{+} $ content and improving $ K^{+} $/$ Na^{+} $ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol $ L^{− 1} $ NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. Conclusions We conclude that the constitutive overexpression of AtHKT1 reduces $ Na^{+} $ accumulation in potato leaves and promotes the $ K^{+} $/$ Na^{+} $ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity. © The Author(s). 2019 |
abstractGer |
Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing $ Na^{+} $ content and improving $ K^{+} $/$ Na^{+} $ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol $ L^{− 1} $ NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. Conclusions We conclude that the constitutive overexpression of AtHKT1 reduces $ Na^{+} $ accumulation in potato leaves and promotes the $ K^{+} $/$ Na^{+} $ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity. © The Author(s). 2019 |
abstract_unstemmed |
Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing $ Na^{+} $ content and improving $ K^{+} $/$ Na^{+} $ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol $ L^{− 1} $ NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. Conclusions We conclude that the constitutive overexpression of AtHKT1 reduces $ Na^{+} $ accumulation in potato leaves and promotes the $ K^{+} $/$ Na^{+} $ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity. © The Author(s). 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_70 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_224 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Improving salt tolerance in potato through overexpression of AtHKT1 gene |
url |
https://dx.doi.org/10.1186/s12870-019-1963-z |
remote_bool |
true |
author2 |
Liu, Yuhui Li, Dan Feng, Shoujiang Yang, Jiangwei Zhang, Jingjing Zhang, Junlian Wang, Di Gan, Yantai |
author2Str |
Liu, Yuhui Li, Dan Feng, Shoujiang Yang, Jiangwei Zhang, Jingjing Zhang, Junlian Wang, Di Gan, Yantai |
ppnlink |
335489060 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12870-019-1963-z |
up_date |
2024-07-04T01:18:54.553Z |
_version_ |
1803609371634040832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027312364</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519192322.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12870-019-1963-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027312364</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12870-019-1963-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Li</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6937-7813</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Improving salt tolerance in potato through overexpression of AtHKT1 gene</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Survival of plants in response to salinity stress is typically related to $ Na^{+} $ toxicity, but little is known about how heterologous high-affinity potassium transporter (HKT) may help alleviate salt-induced damages in potato (Solanum tuberosum L.). Results In this study, we used the Arabidopsis thaliana high-affinity potassium transporter gene (AtHKT1) to enhance the capacity of potato plants to tolerate salinity stress by decreasing $ Na^{+} $ content and improving $ K^{+} $/$ Na^{+} $ ratio in plant leaves, while maintaining osmotic balance. Seven AtHKT1 transformed potato lines (namely T1, T2, T3, T5, T11, T13 and T15) were compared with non-transgenic control plant at molecule and whole-plant levels. The lines T3 and T13 had the highest AtHKT1 expression with the tolerance index (an quantitative assessment) being 6.8 times that of the control. At 30 days under 100 and 150 mmol $ L^{− 1} $ NaCl stress treatments, the T3 and T13 lines had least reductions in net photosynthetic rate, stomatal conductance and transpiration rate among the seven lines, leading to the increased water use efficiency and decreased yield loss. Conclusions We conclude that the constitutive overexpression of AtHKT1 reduces $ Na^{+} $ accumulation in potato leaves and promotes the $ K^{+} $/$ Na^{+} $ homeostasis that minimizes osmotic imbalance, maintains photosynthesis and stomatal conductance, and increases plant productivity.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">gene</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">K</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">/Na</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ratio</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photosynthetic rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stomatal conductance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transpiration rate</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yuhui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Dan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Shoujiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Jiangwei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jingjing</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Junlian</subfield><subfield code="0">(orcid)0000-0001-8093-5495</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Di</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gan, Yantai</subfield><subfield code="0">(orcid)0000-0002-9074-0357</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC plant biology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">19(2019), 1 vom: 16. Aug.</subfield><subfield code="w">(DE-627)335489060</subfield><subfield code="w">(DE-600)2059868-3</subfield><subfield code="x">1471-2229</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:16</subfield><subfield code="g">month:08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12870-019-1963-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_224</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">16</subfield><subfield code="c">08</subfield></datafield></record></collection>
|
score |
7.4026756 |