New methods for estimating follow-up rates in cohort studies
Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had...
Ausführliche Beschreibung
Autor*in: |
Xue, Xiaonan [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2017 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2017 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC medical research methodology - London : BioMed Central, 2001, 17(2017), 1 vom: 01. Dez. |
---|---|
Übergeordnetes Werk: |
volume:17 ; year:2017 ; number:1 ; day:01 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s12874-017-0436-z |
---|
Katalog-ID: |
SPR027373754 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027373754 | ||
003 | DE-627 | ||
005 | 20230520010511.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2017 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12874-017-0436-z |2 doi | |
035 | |a (DE-627)SPR027373754 | ||
035 | |a (SPR)s12874-017-0436-z-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Xue, Xiaonan |e verfasserin |0 (orcid)0000-0003-2872-8119 |4 aut | |
245 | 1 | 0 | |a New methods for estimating follow-up rates in cohort studies |
264 | 1 | |c 2017 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2017 | ||
520 | |a Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations. Methods We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. Results Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). Conclusions The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high. | ||
650 | 4 | |a Person-time |7 (dpeaa)DE-He213 | |
650 | 4 | |a Loss to follow-up |7 (dpeaa)DE-He213 | |
650 | 4 | |a Median survival time |7 (dpeaa)DE-He213 | |
650 | 4 | |a Reverse Kaplan-Meier survival curve |7 (dpeaa)DE-He213 | |
650 | 4 | |a Competing risk |7 (dpeaa)DE-He213 | |
700 | 1 | |a Agalliu, Ilir |4 aut | |
700 | 1 | |a Kim, Mimi Y. |4 aut | |
700 | 1 | |a Wang, Tao |4 aut | |
700 | 1 | |a Lin, Juan |4 aut | |
700 | 1 | |a Ghavamian, Reza |4 aut | |
700 | 1 | |a Strickler, Howard D. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC medical research methodology |d London : BioMed Central, 2001 |g 17(2017), 1 vom: 01. Dez. |w (DE-627)326643818 |w (DE-600)2041362-2 |x 1471-2288 |7 nnns |
773 | 1 | 8 | |g volume:17 |g year:2017 |g number:1 |g day:01 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12874-017-0436-z |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 17 |j 2017 |e 1 |b 01 |c 12 |
author_variant |
x x xx i a ia m y k my myk t w tw j l jl r g rg h d s hd hds |
---|---|
matchkey_str |
article:14712288:2017----::emtosoetmtnflourts |
hierarchy_sort_str |
2017 |
publishDate |
2017 |
allfields |
10.1186/s12874-017-0436-z doi (DE-627)SPR027373754 (SPR)s12874-017-0436-z-e DE-627 ger DE-627 rakwb eng Xue, Xiaonan verfasserin (orcid)0000-0003-2872-8119 aut New methods for estimating follow-up rates in cohort studies 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations. Methods We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. Results Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). Conclusions The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high. Person-time (dpeaa)DE-He213 Loss to follow-up (dpeaa)DE-He213 Median survival time (dpeaa)DE-He213 Reverse Kaplan-Meier survival curve (dpeaa)DE-He213 Competing risk (dpeaa)DE-He213 Agalliu, Ilir aut Kim, Mimi Y. aut Wang, Tao aut Lin, Juan aut Ghavamian, Reza aut Strickler, Howard D. aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 17(2017), 1 vom: 01. Dez. (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:17 year:2017 number:1 day:01 month:12 https://dx.doi.org/10.1186/s12874-017-0436-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2017 1 01 12 |
spelling |
10.1186/s12874-017-0436-z doi (DE-627)SPR027373754 (SPR)s12874-017-0436-z-e DE-627 ger DE-627 rakwb eng Xue, Xiaonan verfasserin (orcid)0000-0003-2872-8119 aut New methods for estimating follow-up rates in cohort studies 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations. Methods We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. Results Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). Conclusions The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high. Person-time (dpeaa)DE-He213 Loss to follow-up (dpeaa)DE-He213 Median survival time (dpeaa)DE-He213 Reverse Kaplan-Meier survival curve (dpeaa)DE-He213 Competing risk (dpeaa)DE-He213 Agalliu, Ilir aut Kim, Mimi Y. aut Wang, Tao aut Lin, Juan aut Ghavamian, Reza aut Strickler, Howard D. aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 17(2017), 1 vom: 01. Dez. (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:17 year:2017 number:1 day:01 month:12 https://dx.doi.org/10.1186/s12874-017-0436-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2017 1 01 12 |
allfields_unstemmed |
10.1186/s12874-017-0436-z doi (DE-627)SPR027373754 (SPR)s12874-017-0436-z-e DE-627 ger DE-627 rakwb eng Xue, Xiaonan verfasserin (orcid)0000-0003-2872-8119 aut New methods for estimating follow-up rates in cohort studies 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations. Methods We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. Results Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). Conclusions The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high. Person-time (dpeaa)DE-He213 Loss to follow-up (dpeaa)DE-He213 Median survival time (dpeaa)DE-He213 Reverse Kaplan-Meier survival curve (dpeaa)DE-He213 Competing risk (dpeaa)DE-He213 Agalliu, Ilir aut Kim, Mimi Y. aut Wang, Tao aut Lin, Juan aut Ghavamian, Reza aut Strickler, Howard D. aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 17(2017), 1 vom: 01. Dez. (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:17 year:2017 number:1 day:01 month:12 https://dx.doi.org/10.1186/s12874-017-0436-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2017 1 01 12 |
allfieldsGer |
10.1186/s12874-017-0436-z doi (DE-627)SPR027373754 (SPR)s12874-017-0436-z-e DE-627 ger DE-627 rakwb eng Xue, Xiaonan verfasserin (orcid)0000-0003-2872-8119 aut New methods for estimating follow-up rates in cohort studies 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations. Methods We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. Results Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). Conclusions The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high. Person-time (dpeaa)DE-He213 Loss to follow-up (dpeaa)DE-He213 Median survival time (dpeaa)DE-He213 Reverse Kaplan-Meier survival curve (dpeaa)DE-He213 Competing risk (dpeaa)DE-He213 Agalliu, Ilir aut Kim, Mimi Y. aut Wang, Tao aut Lin, Juan aut Ghavamian, Reza aut Strickler, Howard D. aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 17(2017), 1 vom: 01. Dez. (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:17 year:2017 number:1 day:01 month:12 https://dx.doi.org/10.1186/s12874-017-0436-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2017 1 01 12 |
allfieldsSound |
10.1186/s12874-017-0436-z doi (DE-627)SPR027373754 (SPR)s12874-017-0436-z-e DE-627 ger DE-627 rakwb eng Xue, Xiaonan verfasserin (orcid)0000-0003-2872-8119 aut New methods for estimating follow-up rates in cohort studies 2017 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2017 Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations. Methods We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. Results Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). Conclusions The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high. Person-time (dpeaa)DE-He213 Loss to follow-up (dpeaa)DE-He213 Median survival time (dpeaa)DE-He213 Reverse Kaplan-Meier survival curve (dpeaa)DE-He213 Competing risk (dpeaa)DE-He213 Agalliu, Ilir aut Kim, Mimi Y. aut Wang, Tao aut Lin, Juan aut Ghavamian, Reza aut Strickler, Howard D. aut Enthalten in BMC medical research methodology London : BioMed Central, 2001 17(2017), 1 vom: 01. Dez. (DE-627)326643818 (DE-600)2041362-2 1471-2288 nnns volume:17 year:2017 number:1 day:01 month:12 https://dx.doi.org/10.1186/s12874-017-0436-z kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 17 2017 1 01 12 |
language |
English |
source |
Enthalten in BMC medical research methodology 17(2017), 1 vom: 01. Dez. volume:17 year:2017 number:1 day:01 month:12 |
sourceStr |
Enthalten in BMC medical research methodology 17(2017), 1 vom: 01. Dez. volume:17 year:2017 number:1 day:01 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Person-time Loss to follow-up Median survival time Reverse Kaplan-Meier survival curve Competing risk |
isfreeaccess_bool |
true |
container_title |
BMC medical research methodology |
authorswithroles_txt_mv |
Xue, Xiaonan @@aut@@ Agalliu, Ilir @@aut@@ Kim, Mimi Y. @@aut@@ Wang, Tao @@aut@@ Lin, Juan @@aut@@ Ghavamian, Reza @@aut@@ Strickler, Howard D. @@aut@@ |
publishDateDaySort_date |
2017-12-01T00:00:00Z |
hierarchy_top_id |
326643818 |
id |
SPR027373754 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027373754</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520010511.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12874-017-0436-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027373754</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12874-017-0436-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xue, Xiaonan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2872-8119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New methods for estimating follow-up rates in cohort studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations. Methods We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. Results Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). Conclusions The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Person-time</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loss to follow-up</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Median survival time</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reverse Kaplan-Meier survival curve</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Competing risk</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agalliu, Ilir</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Mimi Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Tao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Juan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghavamian, Reza</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Strickler, Howard D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical research methodology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">17(2017), 1 vom: 01. Dez.</subfield><subfield code="w">(DE-627)326643818</subfield><subfield code="w">(DE-600)2041362-2</subfield><subfield code="x">1471-2288</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12874-017-0436-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Xue, Xiaonan |
spellingShingle |
Xue, Xiaonan misc Person-time misc Loss to follow-up misc Median survival time misc Reverse Kaplan-Meier survival curve misc Competing risk New methods for estimating follow-up rates in cohort studies |
authorStr |
Xue, Xiaonan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643818 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2288 |
topic_title |
New methods for estimating follow-up rates in cohort studies Person-time (dpeaa)DE-He213 Loss to follow-up (dpeaa)DE-He213 Median survival time (dpeaa)DE-He213 Reverse Kaplan-Meier survival curve (dpeaa)DE-He213 Competing risk (dpeaa)DE-He213 |
topic |
misc Person-time misc Loss to follow-up misc Median survival time misc Reverse Kaplan-Meier survival curve misc Competing risk |
topic_unstemmed |
misc Person-time misc Loss to follow-up misc Median survival time misc Reverse Kaplan-Meier survival curve misc Competing risk |
topic_browse |
misc Person-time misc Loss to follow-up misc Median survival time misc Reverse Kaplan-Meier survival curve misc Competing risk |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC medical research methodology |
hierarchy_parent_id |
326643818 |
hierarchy_top_title |
BMC medical research methodology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643818 (DE-600)2041362-2 |
title |
New methods for estimating follow-up rates in cohort studies |
ctrlnum |
(DE-627)SPR027373754 (SPR)s12874-017-0436-z-e |
title_full |
New methods for estimating follow-up rates in cohort studies |
author_sort |
Xue, Xiaonan |
journal |
BMC medical research methodology |
journalStr |
BMC medical research methodology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2017 |
contenttype_str_mv |
txt |
author_browse |
Xue, Xiaonan Agalliu, Ilir Kim, Mimi Y. Wang, Tao Lin, Juan Ghavamian, Reza Strickler, Howard D. |
container_volume |
17 |
format_se |
Elektronische Aufsätze |
author-letter |
Xue, Xiaonan |
doi_str_mv |
10.1186/s12874-017-0436-z |
normlink |
(ORCID)0000-0003-2872-8119 |
normlink_prefix_str_mv |
(orcid)0000-0003-2872-8119 |
title_sort |
new methods for estimating follow-up rates in cohort studies |
title_auth |
New methods for estimating follow-up rates in cohort studies |
abstract |
Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations. Methods We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. Results Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). Conclusions The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high. © The Author(s). 2017 |
abstractGer |
Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations. Methods We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. Results Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). Conclusions The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high. © The Author(s). 2017 |
abstract_unstemmed |
Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations. Methods We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. Results Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). Conclusions The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high. © The Author(s). 2017 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
New methods for estimating follow-up rates in cohort studies |
url |
https://dx.doi.org/10.1186/s12874-017-0436-z |
remote_bool |
true |
author2 |
Agalliu, Ilir Kim, Mimi Y. Wang, Tao Lin, Juan Ghavamian, Reza Strickler, Howard D. |
author2Str |
Agalliu, Ilir Kim, Mimi Y. Wang, Tao Lin, Juan Ghavamian, Reza Strickler, Howard D. |
ppnlink |
326643818 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12874-017-0436-z |
up_date |
2024-07-04T01:35:04.251Z |
_version_ |
1803610388438188032 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027373754</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520010511.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2017 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12874-017-0436-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027373754</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12874-017-0436-z-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Xue, Xiaonan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2872-8119</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New methods for estimating follow-up rates in cohort studies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2017</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2017</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background The follow-up rate, a standard index of the completeness of follow-up, is important for assessing the validity of a cohort study. A common method for estimating the follow-up rate, the “Percentage Method”, defined as the fraction of all enrollees who developed the event of interest or had complete follow-up, can severely underestimate the degree of follow-up. Alternatively, the median follow-up time does not indicate the completeness of follow-up, and the reverse Kaplan-Meier based method and Clark’s Completeness Index (CCI) also have limitations. Methods We propose a new definition for the follow-up rate, the Person-Time Follow-up Rate (PTFR), which is the observed person-time divided by total person-time assuming no dropouts. The PTFR cannot be calculated directly since the event times for dropouts are not observed. Therefore, two estimation methods are proposed: a formal person-time method (FPT) in which the expected total follow-up time is calculated using the event rate estimated from the observed data, and a simplified person-time method (SPT) that avoids estimation of the event rate by assigning full follow-up time to all events. Simulations were conducted to measure the accuracy of each method, and each method was applied to a prostate cancer recurrence study dataset. Results Simulation results showed that the FPT has the highest accuracy overall. In most situations, the computationally simpler SPT and CCI methods are only slightly biased. When applied to a retrospective cohort study of cancer recurrence, the FPT, CCI and SPT showed substantially greater 5-year follow-up than the Percentage Method (92%, 92% and 93% vs 68%). Conclusions The Person-time methods correct a systematic error in the standard Percentage Method for calculating follow-up rates. The easy to use SPT and CCI methods can be used in tandem to obtain an accurate and tight interval for PTFR. However, the FPT is recommended when event rates and dropout rates are high.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Person-time</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Loss to follow-up</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Median survival time</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reverse Kaplan-Meier survival curve</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Competing risk</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Agalliu, Ilir</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim, Mimi Y.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Tao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Juan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ghavamian, Reza</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Strickler, Howard D.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical research methodology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">17(2017), 1 vom: 01. Dez.</subfield><subfield code="w">(DE-627)326643818</subfield><subfield code="w">(DE-600)2041362-2</subfield><subfield code="x">1471-2288</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:17</subfield><subfield code="g">year:2017</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12874-017-0436-z</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">17</subfield><subfield code="j">2017</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.402237 |