Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis

Background Clinical research and medical practice can be advanced through the prediction of an individual’s health state, trajectory, and responses to treatments. However, the majority of current clinical risk prediction models are based on regression approaches or machine learning algorithms that a...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wongvibulsin, Shannon [verfasserIn]

Wu, Katherine C.

Zeger, Scott L.

Format:

E-Artikel

Sprache:

Englisch

Erschienen:

2019

Schlagwörter:

Clinical risk prediction

Random forests

Survival analysis

Dynamic risk prediction

Anmerkung:

© The Author(s) 2019

Übergeordnetes Werk:

Enthalten in: BMC medical research methodology - London : BioMed Central, 2001, 20(2019), 1 vom: 31. Dez.

Übergeordnetes Werk:

volume:20 ; year:2019 ; number:1 ; day:31 ; month:12

Links:

Volltext

DOI / URN:

10.1186/s12874-019-0863-0

Katalog-ID:

SPR027378284

Nicht das Richtige dabei?

Schreiben Sie uns!