Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness
Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum comput...
Ausführliche Beschreibung
Autor*in: |
Truyers, Carla [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2010 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Truyers et al; licensee BioMed Central Ltd. 2010 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC family practice - London : BioMed Central, 2000, 11(2010), 1 vom: 22. März |
---|---|
Übergeordnetes Werk: |
volume:11 ; year:2010 ; number:1 ; day:22 ; month:03 |
Links: |
---|
DOI / URN: |
10.1186/1471-2296-11-24 |
---|
Katalog-ID: |
SPR027383148 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027383148 | ||
003 | DE-627 | ||
005 | 20230520003706.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2010 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2296-11-24 |2 doi | |
035 | |a (DE-627)SPR027383148 | ||
035 | |a (SPR)1471-2296-11-24-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Truyers, Carla |e verfasserin |4 aut | |
245 | 1 | 0 | |a Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness |
264 | 1 | |c 2010 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Truyers et al; licensee BioMed Central Ltd. 2010 | ||
520 | |a Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Results Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Conclusions Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks. | ||
650 | 4 | |a Influenza |7 (dpeaa)DE-He213 | |
650 | 4 | |a Influenza Season |7 (dpeaa)DE-He213 | |
650 | 4 | |a Acute Respiratory Infection |7 (dpeaa)DE-He213 | |
650 | 4 | |a Syndromic Surveillance |7 (dpeaa)DE-He213 | |
650 | 4 | |a Acute Respiratory Illness |7 (dpeaa)DE-He213 | |
700 | 1 | |a Lesaffre, Emmanuel |4 aut | |
700 | 1 | |a Bartholomeeusen, Stefaan |4 aut | |
700 | 1 | |a Aertgeerts, Bert |4 aut | |
700 | 1 | |a Snacken, René |4 aut | |
700 | 1 | |a Brochier, Bernard |4 aut | |
700 | 1 | |a Yane, Fernande |4 aut | |
700 | 1 | |a Buntinx, Frank |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC family practice |d London : BioMed Central, 2000 |g 11(2010), 1 vom: 22. März |w (DE-627)326644911 |w (DE-600)2041495-X |x 1471-2296 |7 nnns |
773 | 1 | 8 | |g volume:11 |g year:2010 |g number:1 |g day:22 |g month:03 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2296-11-24 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 11 |j 2010 |e 1 |b 22 |c 03 |
author_variant |
c t ct e l el s b sb b a ba r s rs b b bb f y fy f b fb |
---|---|
matchkey_str |
article:14712296:2010----::optrzdeeapatcbsdewrsilcmaalpromneihetnlaanoioigpdmooiatmcusoi |
hierarchy_sort_str |
2010 |
publishDate |
2010 |
allfields |
10.1186/1471-2296-11-24 doi (DE-627)SPR027383148 (SPR)1471-2296-11-24-e DE-627 ger DE-627 rakwb eng Truyers, Carla verfasserin aut Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Truyers et al; licensee BioMed Central Ltd. 2010 Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Results Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Conclusions Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks. Influenza (dpeaa)DE-He213 Influenza Season (dpeaa)DE-He213 Acute Respiratory Infection (dpeaa)DE-He213 Syndromic Surveillance (dpeaa)DE-He213 Acute Respiratory Illness (dpeaa)DE-He213 Lesaffre, Emmanuel aut Bartholomeeusen, Stefaan aut Aertgeerts, Bert aut Snacken, René aut Brochier, Bernard aut Yane, Fernande aut Buntinx, Frank aut Enthalten in BMC family practice London : BioMed Central, 2000 11(2010), 1 vom: 22. März (DE-627)326644911 (DE-600)2041495-X 1471-2296 nnns volume:11 year:2010 number:1 day:22 month:03 https://dx.doi.org/10.1186/1471-2296-11-24 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2010 1 22 03 |
spelling |
10.1186/1471-2296-11-24 doi (DE-627)SPR027383148 (SPR)1471-2296-11-24-e DE-627 ger DE-627 rakwb eng Truyers, Carla verfasserin aut Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Truyers et al; licensee BioMed Central Ltd. 2010 Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Results Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Conclusions Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks. Influenza (dpeaa)DE-He213 Influenza Season (dpeaa)DE-He213 Acute Respiratory Infection (dpeaa)DE-He213 Syndromic Surveillance (dpeaa)DE-He213 Acute Respiratory Illness (dpeaa)DE-He213 Lesaffre, Emmanuel aut Bartholomeeusen, Stefaan aut Aertgeerts, Bert aut Snacken, René aut Brochier, Bernard aut Yane, Fernande aut Buntinx, Frank aut Enthalten in BMC family practice London : BioMed Central, 2000 11(2010), 1 vom: 22. März (DE-627)326644911 (DE-600)2041495-X 1471-2296 nnns volume:11 year:2010 number:1 day:22 month:03 https://dx.doi.org/10.1186/1471-2296-11-24 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2010 1 22 03 |
allfields_unstemmed |
10.1186/1471-2296-11-24 doi (DE-627)SPR027383148 (SPR)1471-2296-11-24-e DE-627 ger DE-627 rakwb eng Truyers, Carla verfasserin aut Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Truyers et al; licensee BioMed Central Ltd. 2010 Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Results Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Conclusions Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks. Influenza (dpeaa)DE-He213 Influenza Season (dpeaa)DE-He213 Acute Respiratory Infection (dpeaa)DE-He213 Syndromic Surveillance (dpeaa)DE-He213 Acute Respiratory Illness (dpeaa)DE-He213 Lesaffre, Emmanuel aut Bartholomeeusen, Stefaan aut Aertgeerts, Bert aut Snacken, René aut Brochier, Bernard aut Yane, Fernande aut Buntinx, Frank aut Enthalten in BMC family practice London : BioMed Central, 2000 11(2010), 1 vom: 22. März (DE-627)326644911 (DE-600)2041495-X 1471-2296 nnns volume:11 year:2010 number:1 day:22 month:03 https://dx.doi.org/10.1186/1471-2296-11-24 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2010 1 22 03 |
allfieldsGer |
10.1186/1471-2296-11-24 doi (DE-627)SPR027383148 (SPR)1471-2296-11-24-e DE-627 ger DE-627 rakwb eng Truyers, Carla verfasserin aut Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Truyers et al; licensee BioMed Central Ltd. 2010 Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Results Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Conclusions Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks. Influenza (dpeaa)DE-He213 Influenza Season (dpeaa)DE-He213 Acute Respiratory Infection (dpeaa)DE-He213 Syndromic Surveillance (dpeaa)DE-He213 Acute Respiratory Illness (dpeaa)DE-He213 Lesaffre, Emmanuel aut Bartholomeeusen, Stefaan aut Aertgeerts, Bert aut Snacken, René aut Brochier, Bernard aut Yane, Fernande aut Buntinx, Frank aut Enthalten in BMC family practice London : BioMed Central, 2000 11(2010), 1 vom: 22. März (DE-627)326644911 (DE-600)2041495-X 1471-2296 nnns volume:11 year:2010 number:1 day:22 month:03 https://dx.doi.org/10.1186/1471-2296-11-24 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2010 1 22 03 |
allfieldsSound |
10.1186/1471-2296-11-24 doi (DE-627)SPR027383148 (SPR)1471-2296-11-24-e DE-627 ger DE-627 rakwb eng Truyers, Carla verfasserin aut Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness 2010 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Truyers et al; licensee BioMed Central Ltd. 2010 Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Results Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Conclusions Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks. Influenza (dpeaa)DE-He213 Influenza Season (dpeaa)DE-He213 Acute Respiratory Infection (dpeaa)DE-He213 Syndromic Surveillance (dpeaa)DE-He213 Acute Respiratory Illness (dpeaa)DE-He213 Lesaffre, Emmanuel aut Bartholomeeusen, Stefaan aut Aertgeerts, Bert aut Snacken, René aut Brochier, Bernard aut Yane, Fernande aut Buntinx, Frank aut Enthalten in BMC family practice London : BioMed Central, 2000 11(2010), 1 vom: 22. März (DE-627)326644911 (DE-600)2041495-X 1471-2296 nnns volume:11 year:2010 number:1 day:22 month:03 https://dx.doi.org/10.1186/1471-2296-11-24 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 11 2010 1 22 03 |
language |
English |
source |
Enthalten in BMC family practice 11(2010), 1 vom: 22. März volume:11 year:2010 number:1 day:22 month:03 |
sourceStr |
Enthalten in BMC family practice 11(2010), 1 vom: 22. März volume:11 year:2010 number:1 day:22 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Influenza Influenza Season Acute Respiratory Infection Syndromic Surveillance Acute Respiratory Illness |
isfreeaccess_bool |
true |
container_title |
BMC family practice |
authorswithroles_txt_mv |
Truyers, Carla @@aut@@ Lesaffre, Emmanuel @@aut@@ Bartholomeeusen, Stefaan @@aut@@ Aertgeerts, Bert @@aut@@ Snacken, René @@aut@@ Brochier, Bernard @@aut@@ Yane, Fernande @@aut@@ Buntinx, Frank @@aut@@ |
publishDateDaySort_date |
2010-03-22T00:00:00Z |
hierarchy_top_id |
326644911 |
id |
SPR027383148 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027383148</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520003706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2296-11-24</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027383148</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2296-11-24-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Truyers, Carla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Truyers et al; licensee BioMed Central Ltd. 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Results Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Conclusions Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Influenza</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Influenza Season</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acute Respiratory Infection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Syndromic Surveillance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acute Respiratory Illness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lesaffre, Emmanuel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bartholomeeusen, Stefaan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aertgeerts, Bert</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Snacken, René</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brochier, Bernard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yane, Fernande</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buntinx, Frank</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC family practice</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">11(2010), 1 vom: 22. März</subfield><subfield code="w">(DE-627)326644911</subfield><subfield code="w">(DE-600)2041495-X</subfield><subfield code="x">1471-2296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2296-11-24</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Truyers, Carla |
spellingShingle |
Truyers, Carla misc Influenza misc Influenza Season misc Acute Respiratory Infection misc Syndromic Surveillance misc Acute Respiratory Illness Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness |
authorStr |
Truyers, Carla |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326644911 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2296 |
topic_title |
Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness Influenza (dpeaa)DE-He213 Influenza Season (dpeaa)DE-He213 Acute Respiratory Infection (dpeaa)DE-He213 Syndromic Surveillance (dpeaa)DE-He213 Acute Respiratory Illness (dpeaa)DE-He213 |
topic |
misc Influenza misc Influenza Season misc Acute Respiratory Infection misc Syndromic Surveillance misc Acute Respiratory Illness |
topic_unstemmed |
misc Influenza misc Influenza Season misc Acute Respiratory Infection misc Syndromic Surveillance misc Acute Respiratory Illness |
topic_browse |
misc Influenza misc Influenza Season misc Acute Respiratory Infection misc Syndromic Surveillance misc Acute Respiratory Illness |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC family practice |
hierarchy_parent_id |
326644911 |
hierarchy_top_title |
BMC family practice |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326644911 (DE-600)2041495-X |
title |
Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness |
ctrlnum |
(DE-627)SPR027383148 (SPR)1471-2296-11-24-e |
title_full |
Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness |
author_sort |
Truyers, Carla |
journal |
BMC family practice |
journalStr |
BMC family practice |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2010 |
contenttype_str_mv |
txt |
author_browse |
Truyers, Carla Lesaffre, Emmanuel Bartholomeeusen, Stefaan Aertgeerts, Bert Snacken, René Brochier, Bernard Yane, Fernande Buntinx, Frank |
container_volume |
11 |
format_se |
Elektronische Aufsätze |
author-letter |
Truyers, Carla |
doi_str_mv |
10.1186/1471-2296-11-24 |
title_sort |
computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness |
title_auth |
Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness |
abstract |
Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Results Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Conclusions Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks. © Truyers et al; licensee BioMed Central Ltd. 2010 |
abstractGer |
Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Results Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Conclusions Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks. © Truyers et al; licensee BioMed Central Ltd. 2010 |
abstract_unstemmed |
Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Results Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Conclusions Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks. © Truyers et al; licensee BioMed Central Ltd. 2010 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness |
url |
https://dx.doi.org/10.1186/1471-2296-11-24 |
remote_bool |
true |
author2 |
Lesaffre, Emmanuel Bartholomeeusen, Stefaan Aertgeerts, Bert Snacken, René Brochier, Bernard Yane, Fernande Buntinx, Frank |
author2Str |
Lesaffre, Emmanuel Bartholomeeusen, Stefaan Aertgeerts, Bert Snacken, René Brochier, Bernard Yane, Fernande Buntinx, Frank |
ppnlink |
326644911 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2296-11-24 |
up_date |
2024-07-04T01:37:36.723Z |
_version_ |
1803610548313522176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027383148</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230520003706.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2010 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2296-11-24</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027383148</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2296-11-24-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Truyers, Carla</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Computerized general practice based networks yield comparable performance with sentinel data in monitoring epidemiological time-course of influenza-like illness and acute respiratory illness</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2010</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Truyers et al; licensee BioMed Central Ltd. 2010</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Computerized morbidity registration networks might serve as early warning systems in a time where natural epidemics such as the $ H_{1} %$ N_{1} $ flu can easily spread from one region to another. Methods In this contribution we examine whether general practice based broad-spectrum computerized morbidity registration networks have the potential to act as a valid surveillance instrument of frequently occurring diseases. We compare general practice based computerized data assessing the frequency of influenza-like illness (ILI) and acute respiratory infections (ARI) with data from a well established case-specific sentinel network, the European Influenza Surveillance Scheme (EISS). The overall frequency and trends of weekly ILI and ARI data are compared using both networks. Results Detection of influenza-like illness and acute respiratory illness occurs equally fast in EISS and the computerized network. The overall frequency data for ARI are the same for both networks, the overall trends are similar, but the increases and decreases in frequency do not occur in exactly the same weeks. For ILI, the overall rate was slightly higher for the computerized network population, especially before the increase of ILI, the overall trend was almost identical and the increases and decreases occur in the same weeks for both networks. Conclusions Computerized morbidity registration networks are a valid tool for monitoring frequent occurring respiratory diseases and the detection of sudden outbreaks.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Influenza</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Influenza Season</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acute Respiratory Infection</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Syndromic Surveillance</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acute Respiratory Illness</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lesaffre, Emmanuel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bartholomeeusen, Stefaan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aertgeerts, Bert</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Snacken, René</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brochier, Bernard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yane, Fernande</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Buntinx, Frank</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC family practice</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">11(2010), 1 vom: 22. März</subfield><subfield code="w">(DE-627)326644911</subfield><subfield code="w">(DE-600)2041495-X</subfield><subfield code="x">1471-2296</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:11</subfield><subfield code="g">year:2010</subfield><subfield code="g">number:1</subfield><subfield code="g">day:22</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2296-11-24</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">11</subfield><subfield code="j">2010</subfield><subfield code="e">1</subfield><subfield code="b">22</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.400982 |