The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study
Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence...
Ausführliche Beschreibung
Autor*in: |
Kleindorfer, Dawn [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2015 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Kleindorfer et al. 2015 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC neurology - London : BioMed Central, 2001, 15(2015), 1 vom: 25. Sept. |
---|---|
Übergeordnetes Werk: |
volume:15 ; year:2015 ; number:1 ; day:25 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/s12883-015-0421-2 |
---|
Katalog-ID: |
SPR027547744 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027547744 | ||
003 | DE-627 | ||
005 | 20230519221543.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2015 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12883-015-0421-2 |2 doi | |
035 | |a (DE-627)SPR027547744 | ||
035 | |a (SPR)s12883-015-0421-2-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Kleindorfer, Dawn |e verfasserin |4 aut | |
245 | 1 | 4 | |a The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study |
264 | 1 | |c 2015 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Kleindorfer et al. 2015 | ||
520 | |a Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. Methods All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430–436. The two definitions used were: “clinical case definition” which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the “best clinical judgment of the physician definition”, which considers all relevant information, including neuroimaging findings. The 95 % confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. Results There were 2403 ischemic stroke events in 2269 patients; 1556 (64 %) had MRI performed. Of the events, 2049 (83 %) were cases by both definitions, 185 (7.7 %) met the clinical case definition but were non-cases in the physician’s opinion and 169 (7.0 %) were non-cases by clinical definition but were cases in the physician’s opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. Conclusions We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging findings. Including MRI in the case definition “rules out” almost the same number of strokes as it “rules in”. | ||
650 | 4 | |a Acute stroke |7 (dpeaa)DE-He213 | |
650 | 4 | |a Epidemiology |7 (dpeaa)DE-He213 | |
650 | 4 | |a Incidence |7 (dpeaa)DE-He213 | |
650 | 4 | |a Brain imaging |7 (dpeaa)DE-He213 | |
700 | 1 | |a Khoury, Jane |4 aut | |
700 | 1 | |a Alwell, Kathleen |4 aut | |
700 | 1 | |a Moomaw, Charles J. |4 aut | |
700 | 1 | |a Woo, Daniel |4 aut | |
700 | 1 | |a Flaherty, Matthew L. |4 aut | |
700 | 1 | |a Adeoye, Opeolu |4 aut | |
700 | 1 | |a Ferioli, Simona |4 aut | |
700 | 1 | |a Khatri, Pooja |4 aut | |
700 | 1 | |a Kissela, Brett M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC neurology |d London : BioMed Central, 2001 |g 15(2015), 1 vom: 25. Sept. |w (DE-627)326643664 |w (DE-600)2041347-6 |x 1471-2377 |7 nnns |
773 | 1 | 8 | |g volume:15 |g year:2015 |g number:1 |g day:25 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12883-015-0421-2 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 15 |j 2015 |e 1 |b 25 |c 09 |
author_variant |
d k dk j k jk k a ka c j m cj cjm d w dw m l f ml mlf o a oa s f sf p k pk b m k bm bmk |
---|---|
matchkey_str |
article:14712377:2015----::hipcomgeirsnnemgnminshmctoeeetoadniecmnmlm |
hierarchy_sort_str |
2015 |
publishDate |
2015 |
allfields |
10.1186/s12883-015-0421-2 doi (DE-627)SPR027547744 (SPR)s12883-015-0421-2-e DE-627 ger DE-627 rakwb eng Kleindorfer, Dawn verfasserin aut The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kleindorfer et al. 2015 Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. Methods All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430–436. The two definitions used were: “clinical case definition” which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the “best clinical judgment of the physician definition”, which considers all relevant information, including neuroimaging findings. The 95 % confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. Results There were 2403 ischemic stroke events in 2269 patients; 1556 (64 %) had MRI performed. Of the events, 2049 (83 %) were cases by both definitions, 185 (7.7 %) met the clinical case definition but were non-cases in the physician’s opinion and 169 (7.0 %) were non-cases by clinical definition but were cases in the physician’s opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. Conclusions We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging findings. Including MRI in the case definition “rules out” almost the same number of strokes as it “rules in”. Acute stroke (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Incidence (dpeaa)DE-He213 Brain imaging (dpeaa)DE-He213 Khoury, Jane aut Alwell, Kathleen aut Moomaw, Charles J. aut Woo, Daniel aut Flaherty, Matthew L. aut Adeoye, Opeolu aut Ferioli, Simona aut Khatri, Pooja aut Kissela, Brett M. aut Enthalten in BMC neurology London : BioMed Central, 2001 15(2015), 1 vom: 25. Sept. (DE-627)326643664 (DE-600)2041347-6 1471-2377 nnns volume:15 year:2015 number:1 day:25 month:09 https://dx.doi.org/10.1186/s12883-015-0421-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2015 1 25 09 |
spelling |
10.1186/s12883-015-0421-2 doi (DE-627)SPR027547744 (SPR)s12883-015-0421-2-e DE-627 ger DE-627 rakwb eng Kleindorfer, Dawn verfasserin aut The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kleindorfer et al. 2015 Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. Methods All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430–436. The two definitions used were: “clinical case definition” which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the “best clinical judgment of the physician definition”, which considers all relevant information, including neuroimaging findings. The 95 % confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. Results There were 2403 ischemic stroke events in 2269 patients; 1556 (64 %) had MRI performed. Of the events, 2049 (83 %) were cases by both definitions, 185 (7.7 %) met the clinical case definition but were non-cases in the physician’s opinion and 169 (7.0 %) were non-cases by clinical definition but were cases in the physician’s opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. Conclusions We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging findings. Including MRI in the case definition “rules out” almost the same number of strokes as it “rules in”. Acute stroke (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Incidence (dpeaa)DE-He213 Brain imaging (dpeaa)DE-He213 Khoury, Jane aut Alwell, Kathleen aut Moomaw, Charles J. aut Woo, Daniel aut Flaherty, Matthew L. aut Adeoye, Opeolu aut Ferioli, Simona aut Khatri, Pooja aut Kissela, Brett M. aut Enthalten in BMC neurology London : BioMed Central, 2001 15(2015), 1 vom: 25. Sept. (DE-627)326643664 (DE-600)2041347-6 1471-2377 nnns volume:15 year:2015 number:1 day:25 month:09 https://dx.doi.org/10.1186/s12883-015-0421-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2015 1 25 09 |
allfields_unstemmed |
10.1186/s12883-015-0421-2 doi (DE-627)SPR027547744 (SPR)s12883-015-0421-2-e DE-627 ger DE-627 rakwb eng Kleindorfer, Dawn verfasserin aut The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kleindorfer et al. 2015 Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. Methods All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430–436. The two definitions used were: “clinical case definition” which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the “best clinical judgment of the physician definition”, which considers all relevant information, including neuroimaging findings. The 95 % confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. Results There were 2403 ischemic stroke events in 2269 patients; 1556 (64 %) had MRI performed. Of the events, 2049 (83 %) were cases by both definitions, 185 (7.7 %) met the clinical case definition but were non-cases in the physician’s opinion and 169 (7.0 %) were non-cases by clinical definition but were cases in the physician’s opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. Conclusions We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging findings. Including MRI in the case definition “rules out” almost the same number of strokes as it “rules in”. Acute stroke (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Incidence (dpeaa)DE-He213 Brain imaging (dpeaa)DE-He213 Khoury, Jane aut Alwell, Kathleen aut Moomaw, Charles J. aut Woo, Daniel aut Flaherty, Matthew L. aut Adeoye, Opeolu aut Ferioli, Simona aut Khatri, Pooja aut Kissela, Brett M. aut Enthalten in BMC neurology London : BioMed Central, 2001 15(2015), 1 vom: 25. Sept. (DE-627)326643664 (DE-600)2041347-6 1471-2377 nnns volume:15 year:2015 number:1 day:25 month:09 https://dx.doi.org/10.1186/s12883-015-0421-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2015 1 25 09 |
allfieldsGer |
10.1186/s12883-015-0421-2 doi (DE-627)SPR027547744 (SPR)s12883-015-0421-2-e DE-627 ger DE-627 rakwb eng Kleindorfer, Dawn verfasserin aut The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kleindorfer et al. 2015 Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. Methods All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430–436. The two definitions used were: “clinical case definition” which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the “best clinical judgment of the physician definition”, which considers all relevant information, including neuroimaging findings. The 95 % confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. Results There were 2403 ischemic stroke events in 2269 patients; 1556 (64 %) had MRI performed. Of the events, 2049 (83 %) were cases by both definitions, 185 (7.7 %) met the clinical case definition but were non-cases in the physician’s opinion and 169 (7.0 %) were non-cases by clinical definition but were cases in the physician’s opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. Conclusions We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging findings. Including MRI in the case definition “rules out” almost the same number of strokes as it “rules in”. Acute stroke (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Incidence (dpeaa)DE-He213 Brain imaging (dpeaa)DE-He213 Khoury, Jane aut Alwell, Kathleen aut Moomaw, Charles J. aut Woo, Daniel aut Flaherty, Matthew L. aut Adeoye, Opeolu aut Ferioli, Simona aut Khatri, Pooja aut Kissela, Brett M. aut Enthalten in BMC neurology London : BioMed Central, 2001 15(2015), 1 vom: 25. Sept. (DE-627)326643664 (DE-600)2041347-6 1471-2377 nnns volume:15 year:2015 number:1 day:25 month:09 https://dx.doi.org/10.1186/s12883-015-0421-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2015 1 25 09 |
allfieldsSound |
10.1186/s12883-015-0421-2 doi (DE-627)SPR027547744 (SPR)s12883-015-0421-2-e DE-627 ger DE-627 rakwb eng Kleindorfer, Dawn verfasserin aut The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study 2015 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Kleindorfer et al. 2015 Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. Methods All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430–436. The two definitions used were: “clinical case definition” which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the “best clinical judgment of the physician definition”, which considers all relevant information, including neuroimaging findings. The 95 % confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. Results There were 2403 ischemic stroke events in 2269 patients; 1556 (64 %) had MRI performed. Of the events, 2049 (83 %) were cases by both definitions, 185 (7.7 %) met the clinical case definition but were non-cases in the physician’s opinion and 169 (7.0 %) were non-cases by clinical definition but were cases in the physician’s opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. Conclusions We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging findings. Including MRI in the case definition “rules out” almost the same number of strokes as it “rules in”. Acute stroke (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Incidence (dpeaa)DE-He213 Brain imaging (dpeaa)DE-He213 Khoury, Jane aut Alwell, Kathleen aut Moomaw, Charles J. aut Woo, Daniel aut Flaherty, Matthew L. aut Adeoye, Opeolu aut Ferioli, Simona aut Khatri, Pooja aut Kissela, Brett M. aut Enthalten in BMC neurology London : BioMed Central, 2001 15(2015), 1 vom: 25. Sept. (DE-627)326643664 (DE-600)2041347-6 1471-2377 nnns volume:15 year:2015 number:1 day:25 month:09 https://dx.doi.org/10.1186/s12883-015-0421-2 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 15 2015 1 25 09 |
language |
English |
source |
Enthalten in BMC neurology 15(2015), 1 vom: 25. Sept. volume:15 year:2015 number:1 day:25 month:09 |
sourceStr |
Enthalten in BMC neurology 15(2015), 1 vom: 25. Sept. volume:15 year:2015 number:1 day:25 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Acute stroke Epidemiology Incidence Brain imaging |
isfreeaccess_bool |
true |
container_title |
BMC neurology |
authorswithroles_txt_mv |
Kleindorfer, Dawn @@aut@@ Khoury, Jane @@aut@@ Alwell, Kathleen @@aut@@ Moomaw, Charles J. @@aut@@ Woo, Daniel @@aut@@ Flaherty, Matthew L. @@aut@@ Adeoye, Opeolu @@aut@@ Ferioli, Simona @@aut@@ Khatri, Pooja @@aut@@ Kissela, Brett M. @@aut@@ |
publishDateDaySort_date |
2015-09-25T00:00:00Z |
hierarchy_top_id |
326643664 |
id |
SPR027547744 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027547744</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519221543.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12883-015-0421-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027547744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12883-015-0421-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kleindorfer, Dawn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kleindorfer et al. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. Methods All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430–436. The two definitions used were: “clinical case definition” which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the “best clinical judgment of the physician definition”, which considers all relevant information, including neuroimaging findings. The 95 % confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. Results There were 2403 ischemic stroke events in 2269 patients; 1556 (64 %) had MRI performed. Of the events, 2049 (83 %) were cases by both definitions, 185 (7.7 %) met the clinical case definition but were non-cases in the physician’s opinion and 169 (7.0 %) were non-cases by clinical definition but were cases in the physician’s opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. Conclusions We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging findings. Including MRI in the case definition “rules out” almost the same number of strokes as it “rules in”.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acute stroke</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epidemiology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incidence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khoury, Jane</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alwell, Kathleen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moomaw, Charles J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Woo, Daniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flaherty, Matthew L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adeoye, Opeolu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferioli, Simona</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khatri, Pooja</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kissela, Brett M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC neurology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">15(2015), 1 vom: 25. Sept.</subfield><subfield code="w">(DE-627)326643664</subfield><subfield code="w">(DE-600)2041347-6</subfield><subfield code="x">1471-2377</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12883-015-0421-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Kleindorfer, Dawn |
spellingShingle |
Kleindorfer, Dawn misc Acute stroke misc Epidemiology misc Incidence misc Brain imaging The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study |
authorStr |
Kleindorfer, Dawn |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643664 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2377 |
topic_title |
The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study Acute stroke (dpeaa)DE-He213 Epidemiology (dpeaa)DE-He213 Incidence (dpeaa)DE-He213 Brain imaging (dpeaa)DE-He213 |
topic |
misc Acute stroke misc Epidemiology misc Incidence misc Brain imaging |
topic_unstemmed |
misc Acute stroke misc Epidemiology misc Incidence misc Brain imaging |
topic_browse |
misc Acute stroke misc Epidemiology misc Incidence misc Brain imaging |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC neurology |
hierarchy_parent_id |
326643664 |
hierarchy_top_title |
BMC neurology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643664 (DE-600)2041347-6 |
title |
The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study |
ctrlnum |
(DE-627)SPR027547744 (SPR)s12883-015-0421-2-e |
title_full |
The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study |
author_sort |
Kleindorfer, Dawn |
journal |
BMC neurology |
journalStr |
BMC neurology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2015 |
contenttype_str_mv |
txt |
author_browse |
Kleindorfer, Dawn Khoury, Jane Alwell, Kathleen Moomaw, Charles J. Woo, Daniel Flaherty, Matthew L. Adeoye, Opeolu Ferioli, Simona Khatri, Pooja Kissela, Brett M. |
container_volume |
15 |
format_se |
Elektronische Aufsätze |
author-letter |
Kleindorfer, Dawn |
doi_str_mv |
10.1186/s12883-015-0421-2 |
title_sort |
impact of magnetic resonance imaging (mri) on ischemic stroke detection and incidence: minimal impact within a population-based study |
title_auth |
The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study |
abstract |
Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. Methods All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430–436. The two definitions used were: “clinical case definition” which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the “best clinical judgment of the physician definition”, which considers all relevant information, including neuroimaging findings. The 95 % confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. Results There were 2403 ischemic stroke events in 2269 patients; 1556 (64 %) had MRI performed. Of the events, 2049 (83 %) were cases by both definitions, 185 (7.7 %) met the clinical case definition but were non-cases in the physician’s opinion and 169 (7.0 %) were non-cases by clinical definition but were cases in the physician’s opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. Conclusions We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging findings. Including MRI in the case definition “rules out” almost the same number of strokes as it “rules in”. © Kleindorfer et al. 2015 |
abstractGer |
Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. Methods All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430–436. The two definitions used were: “clinical case definition” which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the “best clinical judgment of the physician definition”, which considers all relevant information, including neuroimaging findings. The 95 % confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. Results There were 2403 ischemic stroke events in 2269 patients; 1556 (64 %) had MRI performed. Of the events, 2049 (83 %) were cases by both definitions, 185 (7.7 %) met the clinical case definition but were non-cases in the physician’s opinion and 169 (7.0 %) were non-cases by clinical definition but were cases in the physician’s opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. Conclusions We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging findings. Including MRI in the case definition “rules out” almost the same number of strokes as it “rules in”. © Kleindorfer et al. 2015 |
abstract_unstemmed |
Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. Methods All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430–436. The two definitions used were: “clinical case definition” which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the “best clinical judgment of the physician definition”, which considers all relevant information, including neuroimaging findings. The 95 % confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. Results There were 2403 ischemic stroke events in 2269 patients; 1556 (64 %) had MRI performed. Of the events, 2049 (83 %) were cases by both definitions, 185 (7.7 %) met the clinical case definition but were non-cases in the physician’s opinion and 169 (7.0 %) were non-cases by clinical definition but were cases in the physician’s opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. Conclusions We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging findings. Including MRI in the case definition “rules out” almost the same number of strokes as it “rules in”. © Kleindorfer et al. 2015 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study |
url |
https://dx.doi.org/10.1186/s12883-015-0421-2 |
remote_bool |
true |
author2 |
Khoury, Jane Alwell, Kathleen Moomaw, Charles J. Woo, Daniel Flaherty, Matthew L. Adeoye, Opeolu Ferioli, Simona Khatri, Pooja Kissela, Brett M. |
author2Str |
Khoury, Jane Alwell, Kathleen Moomaw, Charles J. Woo, Daniel Flaherty, Matthew L. Adeoye, Opeolu Ferioli, Simona Khatri, Pooja Kissela, Brett M. |
ppnlink |
326643664 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12883-015-0421-2 |
up_date |
2024-07-03T13:33:27.851Z |
_version_ |
1803564988886941696 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027547744</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519221543.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2015 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12883-015-0421-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027547744</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12883-015-0421-2-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kleindorfer, Dawn</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="4"><subfield code="a">The impact of Magnetic Resonance Imaging (MRI) on ischemic stroke detection and incidence: minimal impact within a population-based study</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2015</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Kleindorfer et al. 2015</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background There are several situations in which magnetic resonance imaging (MRI) might impact whether an cerebrovascular event is considered a new stroke. These include clinically non-focal events with positive imaging for acute cerebral infarction, and worsening of older symptoms without evidence of new infarction on MRI. We sought to investigate the impact of MRI on stroke detection and stroke incidence, by describing agreement between a strictly clinical definition of stroke and a definition based on physician opinion, including MRI imaging findings. Methods All hospitalized strokes that occurred in five Ohio and Northern Kentucky counties (population 1.3 million) in the calendar year of 2005 were identified using ICD-9 discharge codes 430–436. The two definitions used were: “clinical case definition” which included sudden onset focal neurologic symptoms referable to a vascular territory for >24 h, compared to the “best clinical judgment of the physician definition”, which considers all relevant information, including neuroimaging findings. The 95 % confidence intervals (CI) for the incidence rates were calculated assuming a Poisson distribution. Rates were standardized to the 2000 U.S. population, adjusting for age, race, and sex, and included all age groups. Results There were 2403 ischemic stroke events in 2269 patients; 1556 (64 %) had MRI performed. Of the events, 2049 (83 %) were cases by both definitions, 185 (7.7 %) met the clinical case definition but were non-cases in the physician’s opinion and 169 (7.0 %) were non-cases by clinical definition but were cases in the physician’s opinion. There was no significant difference in the incidence rates of first-ever or total ischemic strokes generated by the two different definitions, or when only those with MRI imaging were included. Conclusions We found that MRI findings do not appear to substantially change stroke incidence estimates, as the strictly clinical definition of stroke did not significantly differ from a definition that included imaging findings. Including MRI in the case definition “rules out” almost the same number of strokes as it “rules in”.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Acute stroke</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epidemiology</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Incidence</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Brain imaging</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khoury, Jane</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alwell, Kathleen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moomaw, Charles J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Woo, Daniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Flaherty, Matthew L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Adeoye, Opeolu</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ferioli, Simona</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khatri, Pooja</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kissela, Brett M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC neurology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">15(2015), 1 vom: 25. Sept.</subfield><subfield code="w">(DE-627)326643664</subfield><subfield code="w">(DE-600)2041347-6</subfield><subfield code="x">1471-2377</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:15</subfield><subfield code="g">year:2015</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12883-015-0421-2</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">15</subfield><subfield code="j">2015</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.40189 |