Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China
Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in...
Ausführliche Beschreibung
Autor*in: |
Wen, Tiancai [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2018 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2018 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC neurology - London : BioMed Central, 2001, 18(2018), 1 vom: 26. Dez. |
---|---|
Übergeordnetes Werk: |
volume:18 ; year:2018 ; number:1 ; day:26 ; month:12 |
Links: |
---|
DOI / URN: |
10.1186/s12883-018-1209-y |
---|
Katalog-ID: |
SPR027556441 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR027556441 | ||
003 | DE-627 | ||
005 | 20230519172234.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2018 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12883-018-1209-y |2 doi | |
035 | |a (DE-627)SPR027556441 | ||
035 | |a (SPR)s12883-018-1209-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Wen, Tiancai |e verfasserin |4 aut | |
245 | 1 | 0 | |a Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China |
264 | 1 | |c 2018 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2018 | ||
520 | |a Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in 29 provinces, municipalities or autonomous districts across China who experienced an unplanned readmission after stroke between 2015 and 2016, and extracted data from the inpatients’ cover sheet data from the Medical Record Monitoring Database. Patients were grouped into readmission within 31 days or beyond for analysis. Chi-squared test was used to analyze demographic information, health system and clinical process-related factors according to the data type. Multilevel logistic modeling was used to examine the effects of patient (level 1) and hospital (level 2) characteristics on an unplanned readmission ≤31 days. Results Among 50,912 patients, 14,664 (28.8%) were readmitted within 31 days after discharge. The commonest cause of readmissions were recurrent stroke (34.8%), hypertension (22.94%), cardio/cerebrovascular disease (13.26%) and diabetes/diabetic complications (7.34%). Higher risks of unplanned readmissions were associated with diabetes (OR = 1.089, P = 0.001), use of clinical pathways (OR = 1.174, P < 0.001), and being discharged without doctor’s advice (OR = 1.485, P < 0.001). Lower risks were associated with basic medical insurances (OR ranging from 0.225 to 0.716, P < 0.001) and commercial medical insurance (OR = 0.636, P = 0.021), compared to self-paying for medical services. And patients aged 50 years old and above (OR ranging from 0.650 to 0.985, P < 0.05), with haemorrhagic stroke (OR = 0.467, P < 0.001), with length of stay more than 7 days in hospital (OR ranging from 0.082 to 0.566, P < 0.001), also had lower risks. Conclusions Age, type of stroke, medical insurance status, type of discharge, use of clinical pathways, length of hospital stay and comorbidities were the most influential factors for readmission within 31 days. | ||
650 | 4 | |a Stroke |7 (dpeaa)DE-He213 | |
650 | 4 | |a Unplanned readmission |7 (dpeaa)DE-He213 | |
650 | 4 | |a Hospitalization |7 (dpeaa)DE-He213 | |
650 | 4 | |a Cover sheet of medical record |7 (dpeaa)DE-He213 | |
650 | 4 | |a Risk factor |7 (dpeaa)DE-He213 | |
700 | 1 | |a Liu, Baoyan |4 aut | |
700 | 1 | |a Wan, Xia |4 aut | |
700 | 1 | |a Zhang, Xiaoping |4 aut | |
700 | 1 | |a Zhang, Jin |4 aut | |
700 | 1 | |a Zhou, Xuezhong |4 aut | |
700 | 1 | |a Lau, Alexander Y. L. |4 aut | |
700 | 1 | |a Zhang, Yanning |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC neurology |d London : BioMed Central, 2001 |g 18(2018), 1 vom: 26. Dez. |w (DE-627)326643664 |w (DE-600)2041347-6 |x 1471-2377 |7 nnns |
773 | 1 | 8 | |g volume:18 |g year:2018 |g number:1 |g day:26 |g month:12 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12883-018-1209-y |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 18 |j 2018 |e 1 |b 26 |c 12 |
author_variant |
t w tw b l bl x w xw x z xz j z jz x z xz a y l l ayl ayll y z yz |
---|---|
matchkey_str |
article:14712377:2018----::ikatrascaewt3dynlneramsinn01dshrep |
hierarchy_sort_str |
2018 |
publishDate |
2018 |
allfields |
10.1186/s12883-018-1209-y doi (DE-627)SPR027556441 (SPR)s12883-018-1209-y-e DE-627 ger DE-627 rakwb eng Wen, Tiancai verfasserin aut Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in 29 provinces, municipalities or autonomous districts across China who experienced an unplanned readmission after stroke between 2015 and 2016, and extracted data from the inpatients’ cover sheet data from the Medical Record Monitoring Database. Patients were grouped into readmission within 31 days or beyond for analysis. Chi-squared test was used to analyze demographic information, health system and clinical process-related factors according to the data type. Multilevel logistic modeling was used to examine the effects of patient (level 1) and hospital (level 2) characteristics on an unplanned readmission ≤31 days. Results Among 50,912 patients, 14,664 (28.8%) were readmitted within 31 days after discharge. The commonest cause of readmissions were recurrent stroke (34.8%), hypertension (22.94%), cardio/cerebrovascular disease (13.26%) and diabetes/diabetic complications (7.34%). Higher risks of unplanned readmissions were associated with diabetes (OR = 1.089, P = 0.001), use of clinical pathways (OR = 1.174, P < 0.001), and being discharged without doctor’s advice (OR = 1.485, P < 0.001). Lower risks were associated with basic medical insurances (OR ranging from 0.225 to 0.716, P < 0.001) and commercial medical insurance (OR = 0.636, P = 0.021), compared to self-paying for medical services. And patients aged 50 years old and above (OR ranging from 0.650 to 0.985, P < 0.05), with haemorrhagic stroke (OR = 0.467, P < 0.001), with length of stay more than 7 days in hospital (OR ranging from 0.082 to 0.566, P < 0.001), also had lower risks. Conclusions Age, type of stroke, medical insurance status, type of discharge, use of clinical pathways, length of hospital stay and comorbidities were the most influential factors for readmission within 31 days. Stroke (dpeaa)DE-He213 Unplanned readmission (dpeaa)DE-He213 Hospitalization (dpeaa)DE-He213 Cover sheet of medical record (dpeaa)DE-He213 Risk factor (dpeaa)DE-He213 Liu, Baoyan aut Wan, Xia aut Zhang, Xiaoping aut Zhang, Jin aut Zhou, Xuezhong aut Lau, Alexander Y. L. aut Zhang, Yanning aut Enthalten in BMC neurology London : BioMed Central, 2001 18(2018), 1 vom: 26. Dez. (DE-627)326643664 (DE-600)2041347-6 1471-2377 nnns volume:18 year:2018 number:1 day:26 month:12 https://dx.doi.org/10.1186/s12883-018-1209-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 1 26 12 |
spelling |
10.1186/s12883-018-1209-y doi (DE-627)SPR027556441 (SPR)s12883-018-1209-y-e DE-627 ger DE-627 rakwb eng Wen, Tiancai verfasserin aut Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in 29 provinces, municipalities or autonomous districts across China who experienced an unplanned readmission after stroke between 2015 and 2016, and extracted data from the inpatients’ cover sheet data from the Medical Record Monitoring Database. Patients were grouped into readmission within 31 days or beyond for analysis. Chi-squared test was used to analyze demographic information, health system and clinical process-related factors according to the data type. Multilevel logistic modeling was used to examine the effects of patient (level 1) and hospital (level 2) characteristics on an unplanned readmission ≤31 days. Results Among 50,912 patients, 14,664 (28.8%) were readmitted within 31 days after discharge. The commonest cause of readmissions were recurrent stroke (34.8%), hypertension (22.94%), cardio/cerebrovascular disease (13.26%) and diabetes/diabetic complications (7.34%). Higher risks of unplanned readmissions were associated with diabetes (OR = 1.089, P = 0.001), use of clinical pathways (OR = 1.174, P < 0.001), and being discharged without doctor’s advice (OR = 1.485, P < 0.001). Lower risks were associated with basic medical insurances (OR ranging from 0.225 to 0.716, P < 0.001) and commercial medical insurance (OR = 0.636, P = 0.021), compared to self-paying for medical services. And patients aged 50 years old and above (OR ranging from 0.650 to 0.985, P < 0.05), with haemorrhagic stroke (OR = 0.467, P < 0.001), with length of stay more than 7 days in hospital (OR ranging from 0.082 to 0.566, P < 0.001), also had lower risks. Conclusions Age, type of stroke, medical insurance status, type of discharge, use of clinical pathways, length of hospital stay and comorbidities were the most influential factors for readmission within 31 days. Stroke (dpeaa)DE-He213 Unplanned readmission (dpeaa)DE-He213 Hospitalization (dpeaa)DE-He213 Cover sheet of medical record (dpeaa)DE-He213 Risk factor (dpeaa)DE-He213 Liu, Baoyan aut Wan, Xia aut Zhang, Xiaoping aut Zhang, Jin aut Zhou, Xuezhong aut Lau, Alexander Y. L. aut Zhang, Yanning aut Enthalten in BMC neurology London : BioMed Central, 2001 18(2018), 1 vom: 26. Dez. (DE-627)326643664 (DE-600)2041347-6 1471-2377 nnns volume:18 year:2018 number:1 day:26 month:12 https://dx.doi.org/10.1186/s12883-018-1209-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 1 26 12 |
allfields_unstemmed |
10.1186/s12883-018-1209-y doi (DE-627)SPR027556441 (SPR)s12883-018-1209-y-e DE-627 ger DE-627 rakwb eng Wen, Tiancai verfasserin aut Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in 29 provinces, municipalities or autonomous districts across China who experienced an unplanned readmission after stroke between 2015 and 2016, and extracted data from the inpatients’ cover sheet data from the Medical Record Monitoring Database. Patients were grouped into readmission within 31 days or beyond for analysis. Chi-squared test was used to analyze demographic information, health system and clinical process-related factors according to the data type. Multilevel logistic modeling was used to examine the effects of patient (level 1) and hospital (level 2) characteristics on an unplanned readmission ≤31 days. Results Among 50,912 patients, 14,664 (28.8%) were readmitted within 31 days after discharge. The commonest cause of readmissions were recurrent stroke (34.8%), hypertension (22.94%), cardio/cerebrovascular disease (13.26%) and diabetes/diabetic complications (7.34%). Higher risks of unplanned readmissions were associated with diabetes (OR = 1.089, P = 0.001), use of clinical pathways (OR = 1.174, P < 0.001), and being discharged without doctor’s advice (OR = 1.485, P < 0.001). Lower risks were associated with basic medical insurances (OR ranging from 0.225 to 0.716, P < 0.001) and commercial medical insurance (OR = 0.636, P = 0.021), compared to self-paying for medical services. And patients aged 50 years old and above (OR ranging from 0.650 to 0.985, P < 0.05), with haemorrhagic stroke (OR = 0.467, P < 0.001), with length of stay more than 7 days in hospital (OR ranging from 0.082 to 0.566, P < 0.001), also had lower risks. Conclusions Age, type of stroke, medical insurance status, type of discharge, use of clinical pathways, length of hospital stay and comorbidities were the most influential factors for readmission within 31 days. Stroke (dpeaa)DE-He213 Unplanned readmission (dpeaa)DE-He213 Hospitalization (dpeaa)DE-He213 Cover sheet of medical record (dpeaa)DE-He213 Risk factor (dpeaa)DE-He213 Liu, Baoyan aut Wan, Xia aut Zhang, Xiaoping aut Zhang, Jin aut Zhou, Xuezhong aut Lau, Alexander Y. L. aut Zhang, Yanning aut Enthalten in BMC neurology London : BioMed Central, 2001 18(2018), 1 vom: 26. Dez. (DE-627)326643664 (DE-600)2041347-6 1471-2377 nnns volume:18 year:2018 number:1 day:26 month:12 https://dx.doi.org/10.1186/s12883-018-1209-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 1 26 12 |
allfieldsGer |
10.1186/s12883-018-1209-y doi (DE-627)SPR027556441 (SPR)s12883-018-1209-y-e DE-627 ger DE-627 rakwb eng Wen, Tiancai verfasserin aut Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in 29 provinces, municipalities or autonomous districts across China who experienced an unplanned readmission after stroke between 2015 and 2016, and extracted data from the inpatients’ cover sheet data from the Medical Record Monitoring Database. Patients were grouped into readmission within 31 days or beyond for analysis. Chi-squared test was used to analyze demographic information, health system and clinical process-related factors according to the data type. Multilevel logistic modeling was used to examine the effects of patient (level 1) and hospital (level 2) characteristics on an unplanned readmission ≤31 days. Results Among 50,912 patients, 14,664 (28.8%) were readmitted within 31 days after discharge. The commonest cause of readmissions were recurrent stroke (34.8%), hypertension (22.94%), cardio/cerebrovascular disease (13.26%) and diabetes/diabetic complications (7.34%). Higher risks of unplanned readmissions were associated with diabetes (OR = 1.089, P = 0.001), use of clinical pathways (OR = 1.174, P < 0.001), and being discharged without doctor’s advice (OR = 1.485, P < 0.001). Lower risks were associated with basic medical insurances (OR ranging from 0.225 to 0.716, P < 0.001) and commercial medical insurance (OR = 0.636, P = 0.021), compared to self-paying for medical services. And patients aged 50 years old and above (OR ranging from 0.650 to 0.985, P < 0.05), with haemorrhagic stroke (OR = 0.467, P < 0.001), with length of stay more than 7 days in hospital (OR ranging from 0.082 to 0.566, P < 0.001), also had lower risks. Conclusions Age, type of stroke, medical insurance status, type of discharge, use of clinical pathways, length of hospital stay and comorbidities were the most influential factors for readmission within 31 days. Stroke (dpeaa)DE-He213 Unplanned readmission (dpeaa)DE-He213 Hospitalization (dpeaa)DE-He213 Cover sheet of medical record (dpeaa)DE-He213 Risk factor (dpeaa)DE-He213 Liu, Baoyan aut Wan, Xia aut Zhang, Xiaoping aut Zhang, Jin aut Zhou, Xuezhong aut Lau, Alexander Y. L. aut Zhang, Yanning aut Enthalten in BMC neurology London : BioMed Central, 2001 18(2018), 1 vom: 26. Dez. (DE-627)326643664 (DE-600)2041347-6 1471-2377 nnns volume:18 year:2018 number:1 day:26 month:12 https://dx.doi.org/10.1186/s12883-018-1209-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 1 26 12 |
allfieldsSound |
10.1186/s12883-018-1209-y doi (DE-627)SPR027556441 (SPR)s12883-018-1209-y-e DE-627 ger DE-627 rakwb eng Wen, Tiancai verfasserin aut Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China 2018 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2018 Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in 29 provinces, municipalities or autonomous districts across China who experienced an unplanned readmission after stroke between 2015 and 2016, and extracted data from the inpatients’ cover sheet data from the Medical Record Monitoring Database. Patients were grouped into readmission within 31 days or beyond for analysis. Chi-squared test was used to analyze demographic information, health system and clinical process-related factors according to the data type. Multilevel logistic modeling was used to examine the effects of patient (level 1) and hospital (level 2) characteristics on an unplanned readmission ≤31 days. Results Among 50,912 patients, 14,664 (28.8%) were readmitted within 31 days after discharge. The commonest cause of readmissions were recurrent stroke (34.8%), hypertension (22.94%), cardio/cerebrovascular disease (13.26%) and diabetes/diabetic complications (7.34%). Higher risks of unplanned readmissions were associated with diabetes (OR = 1.089, P = 0.001), use of clinical pathways (OR = 1.174, P < 0.001), and being discharged without doctor’s advice (OR = 1.485, P < 0.001). Lower risks were associated with basic medical insurances (OR ranging from 0.225 to 0.716, P < 0.001) and commercial medical insurance (OR = 0.636, P = 0.021), compared to self-paying for medical services. And patients aged 50 years old and above (OR ranging from 0.650 to 0.985, P < 0.05), with haemorrhagic stroke (OR = 0.467, P < 0.001), with length of stay more than 7 days in hospital (OR ranging from 0.082 to 0.566, P < 0.001), also had lower risks. Conclusions Age, type of stroke, medical insurance status, type of discharge, use of clinical pathways, length of hospital stay and comorbidities were the most influential factors for readmission within 31 days. Stroke (dpeaa)DE-He213 Unplanned readmission (dpeaa)DE-He213 Hospitalization (dpeaa)DE-He213 Cover sheet of medical record (dpeaa)DE-He213 Risk factor (dpeaa)DE-He213 Liu, Baoyan aut Wan, Xia aut Zhang, Xiaoping aut Zhang, Jin aut Zhou, Xuezhong aut Lau, Alexander Y. L. aut Zhang, Yanning aut Enthalten in BMC neurology London : BioMed Central, 2001 18(2018), 1 vom: 26. Dez. (DE-627)326643664 (DE-600)2041347-6 1471-2377 nnns volume:18 year:2018 number:1 day:26 month:12 https://dx.doi.org/10.1186/s12883-018-1209-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 18 2018 1 26 12 |
language |
English |
source |
Enthalten in BMC neurology 18(2018), 1 vom: 26. Dez. volume:18 year:2018 number:1 day:26 month:12 |
sourceStr |
Enthalten in BMC neurology 18(2018), 1 vom: 26. Dez. volume:18 year:2018 number:1 day:26 month:12 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Stroke Unplanned readmission Hospitalization Cover sheet of medical record Risk factor |
isfreeaccess_bool |
true |
container_title |
BMC neurology |
authorswithroles_txt_mv |
Wen, Tiancai @@aut@@ Liu, Baoyan @@aut@@ Wan, Xia @@aut@@ Zhang, Xiaoping @@aut@@ Zhang, Jin @@aut@@ Zhou, Xuezhong @@aut@@ Lau, Alexander Y. L. @@aut@@ Zhang, Yanning @@aut@@ |
publishDateDaySort_date |
2018-12-26T00:00:00Z |
hierarchy_top_id |
326643664 |
id |
SPR027556441 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027556441</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519172234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12883-018-1209-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027556441</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12883-018-1209-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wen, Tiancai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in 29 provinces, municipalities or autonomous districts across China who experienced an unplanned readmission after stroke between 2015 and 2016, and extracted data from the inpatients’ cover sheet data from the Medical Record Monitoring Database. Patients were grouped into readmission within 31 days or beyond for analysis. Chi-squared test was used to analyze demographic information, health system and clinical process-related factors according to the data type. Multilevel logistic modeling was used to examine the effects of patient (level 1) and hospital (level 2) characteristics on an unplanned readmission ≤31 days. Results Among 50,912 patients, 14,664 (28.8%) were readmitted within 31 days after discharge. The commonest cause of readmissions were recurrent stroke (34.8%), hypertension (22.94%), cardio/cerebrovascular disease (13.26%) and diabetes/diabetic complications (7.34%). Higher risks of unplanned readmissions were associated with diabetes (OR = 1.089, P = 0.001), use of clinical pathways (OR = 1.174, P < 0.001), and being discharged without doctor’s advice (OR = 1.485, P < 0.001). Lower risks were associated with basic medical insurances (OR ranging from 0.225 to 0.716, P < 0.001) and commercial medical insurance (OR = 0.636, P = 0.021), compared to self-paying for medical services. And patients aged 50 years old and above (OR ranging from 0.650 to 0.985, P < 0.05), with haemorrhagic stroke (OR = 0.467, P < 0.001), with length of stay more than 7 days in hospital (OR ranging from 0.082 to 0.566, P < 0.001), also had lower risks. Conclusions Age, type of stroke, medical insurance status, type of discharge, use of clinical pathways, length of hospital stay and comorbidities were the most influential factors for readmission within 31 days.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stroke</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unplanned readmission</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hospitalization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cover sheet of medical record</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk factor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Baoyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Xia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaoping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Xuezhong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lau, Alexander Y. L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yanning</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC neurology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">18(2018), 1 vom: 26. Dez.</subfield><subfield code="w">(DE-627)326643664</subfield><subfield code="w">(DE-600)2041347-6</subfield><subfield code="x">1471-2377</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12883-018-1209-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
author |
Wen, Tiancai |
spellingShingle |
Wen, Tiancai misc Stroke misc Unplanned readmission misc Hospitalization misc Cover sheet of medical record misc Risk factor Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China |
authorStr |
Wen, Tiancai |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643664 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2377 |
topic_title |
Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China Stroke (dpeaa)DE-He213 Unplanned readmission (dpeaa)DE-He213 Hospitalization (dpeaa)DE-He213 Cover sheet of medical record (dpeaa)DE-He213 Risk factor (dpeaa)DE-He213 |
topic |
misc Stroke misc Unplanned readmission misc Hospitalization misc Cover sheet of medical record misc Risk factor |
topic_unstemmed |
misc Stroke misc Unplanned readmission misc Hospitalization misc Cover sheet of medical record misc Risk factor |
topic_browse |
misc Stroke misc Unplanned readmission misc Hospitalization misc Cover sheet of medical record misc Risk factor |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC neurology |
hierarchy_parent_id |
326643664 |
hierarchy_top_title |
BMC neurology |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643664 (DE-600)2041347-6 |
title |
Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China |
ctrlnum |
(DE-627)SPR027556441 (SPR)s12883-018-1209-y-e |
title_full |
Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China |
author_sort |
Wen, Tiancai |
journal |
BMC neurology |
journalStr |
BMC neurology |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2018 |
contenttype_str_mv |
txt |
author_browse |
Wen, Tiancai Liu, Baoyan Wan, Xia Zhang, Xiaoping Zhang, Jin Zhou, Xuezhong Lau, Alexander Y. L. Zhang, Yanning |
container_volume |
18 |
format_se |
Elektronische Aufsätze |
author-letter |
Wen, Tiancai |
doi_str_mv |
10.1186/s12883-018-1209-y |
title_sort |
risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in china |
title_auth |
Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China |
abstract |
Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in 29 provinces, municipalities or autonomous districts across China who experienced an unplanned readmission after stroke between 2015 and 2016, and extracted data from the inpatients’ cover sheet data from the Medical Record Monitoring Database. Patients were grouped into readmission within 31 days or beyond for analysis. Chi-squared test was used to analyze demographic information, health system and clinical process-related factors according to the data type. Multilevel logistic modeling was used to examine the effects of patient (level 1) and hospital (level 2) characteristics on an unplanned readmission ≤31 days. Results Among 50,912 patients, 14,664 (28.8%) were readmitted within 31 days after discharge. The commonest cause of readmissions were recurrent stroke (34.8%), hypertension (22.94%), cardio/cerebrovascular disease (13.26%) and diabetes/diabetic complications (7.34%). Higher risks of unplanned readmissions were associated with diabetes (OR = 1.089, P = 0.001), use of clinical pathways (OR = 1.174, P < 0.001), and being discharged without doctor’s advice (OR = 1.485, P < 0.001). Lower risks were associated with basic medical insurances (OR ranging from 0.225 to 0.716, P < 0.001) and commercial medical insurance (OR = 0.636, P = 0.021), compared to self-paying for medical services. And patients aged 50 years old and above (OR ranging from 0.650 to 0.985, P < 0.05), with haemorrhagic stroke (OR = 0.467, P < 0.001), with length of stay more than 7 days in hospital (OR ranging from 0.082 to 0.566, P < 0.001), also had lower risks. Conclusions Age, type of stroke, medical insurance status, type of discharge, use of clinical pathways, length of hospital stay and comorbidities were the most influential factors for readmission within 31 days. © The Author(s). 2018 |
abstractGer |
Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in 29 provinces, municipalities or autonomous districts across China who experienced an unplanned readmission after stroke between 2015 and 2016, and extracted data from the inpatients’ cover sheet data from the Medical Record Monitoring Database. Patients were grouped into readmission within 31 days or beyond for analysis. Chi-squared test was used to analyze demographic information, health system and clinical process-related factors according to the data type. Multilevel logistic modeling was used to examine the effects of patient (level 1) and hospital (level 2) characteristics on an unplanned readmission ≤31 days. Results Among 50,912 patients, 14,664 (28.8%) were readmitted within 31 days after discharge. The commonest cause of readmissions were recurrent stroke (34.8%), hypertension (22.94%), cardio/cerebrovascular disease (13.26%) and diabetes/diabetic complications (7.34%). Higher risks of unplanned readmissions were associated with diabetes (OR = 1.089, P = 0.001), use of clinical pathways (OR = 1.174, P < 0.001), and being discharged without doctor’s advice (OR = 1.485, P < 0.001). Lower risks were associated with basic medical insurances (OR ranging from 0.225 to 0.716, P < 0.001) and commercial medical insurance (OR = 0.636, P = 0.021), compared to self-paying for medical services. And patients aged 50 years old and above (OR ranging from 0.650 to 0.985, P < 0.05), with haemorrhagic stroke (OR = 0.467, P < 0.001), with length of stay more than 7 days in hospital (OR ranging from 0.082 to 0.566, P < 0.001), also had lower risks. Conclusions Age, type of stroke, medical insurance status, type of discharge, use of clinical pathways, length of hospital stay and comorbidities were the most influential factors for readmission within 31 days. © The Author(s). 2018 |
abstract_unstemmed |
Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in 29 provinces, municipalities or autonomous districts across China who experienced an unplanned readmission after stroke between 2015 and 2016, and extracted data from the inpatients’ cover sheet data from the Medical Record Monitoring Database. Patients were grouped into readmission within 31 days or beyond for analysis. Chi-squared test was used to analyze demographic information, health system and clinical process-related factors according to the data type. Multilevel logistic modeling was used to examine the effects of patient (level 1) and hospital (level 2) characteristics on an unplanned readmission ≤31 days. Results Among 50,912 patients, 14,664 (28.8%) were readmitted within 31 days after discharge. The commonest cause of readmissions were recurrent stroke (34.8%), hypertension (22.94%), cardio/cerebrovascular disease (13.26%) and diabetes/diabetic complications (7.34%). Higher risks of unplanned readmissions were associated with diabetes (OR = 1.089, P = 0.001), use of clinical pathways (OR = 1.174, P < 0.001), and being discharged without doctor’s advice (OR = 1.485, P < 0.001). Lower risks were associated with basic medical insurances (OR ranging from 0.225 to 0.716, P < 0.001) and commercial medical insurance (OR = 0.636, P = 0.021), compared to self-paying for medical services. And patients aged 50 years old and above (OR ranging from 0.650 to 0.985, P < 0.05), with haemorrhagic stroke (OR = 0.467, P < 0.001), with length of stay more than 7 days in hospital (OR ranging from 0.082 to 0.566, P < 0.001), also had lower risks. Conclusions Age, type of stroke, medical insurance status, type of discharge, use of clinical pathways, length of hospital stay and comorbidities were the most influential factors for readmission within 31 days. © The Author(s). 2018 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China |
url |
https://dx.doi.org/10.1186/s12883-018-1209-y |
remote_bool |
true |
author2 |
Liu, Baoyan Wan, Xia Zhang, Xiaoping Zhang, Jin Zhou, Xuezhong Lau, Alexander Y. L. Zhang, Yanning |
author2Str |
Liu, Baoyan Wan, Xia Zhang, Xiaoping Zhang, Jin Zhou, Xuezhong Lau, Alexander Y. L. Zhang, Yanning |
ppnlink |
326643664 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12883-018-1209-y |
up_date |
2024-07-03T13:36:46.354Z |
_version_ |
1803565197017743360 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR027556441</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519172234.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2018 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12883-018-1209-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR027556441</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12883-018-1209-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wen, Tiancai</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Risk factors associated with 31-day unplanned readmission in 50,912 discharged patients after stroke in China</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2018</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2018</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Unplanned readmission within 31 days of discharge after stroke is a useful indicator for monitoring quality of hospital care. We evaluated the risk factors associated with 31-day unplanned readmission of stroke patients in China. Methods We identified 50,912 patients from 375 hospitals in 29 provinces, municipalities or autonomous districts across China who experienced an unplanned readmission after stroke between 2015 and 2016, and extracted data from the inpatients’ cover sheet data from the Medical Record Monitoring Database. Patients were grouped into readmission within 31 days or beyond for analysis. Chi-squared test was used to analyze demographic information, health system and clinical process-related factors according to the data type. Multilevel logistic modeling was used to examine the effects of patient (level 1) and hospital (level 2) characteristics on an unplanned readmission ≤31 days. Results Among 50,912 patients, 14,664 (28.8%) were readmitted within 31 days after discharge. The commonest cause of readmissions were recurrent stroke (34.8%), hypertension (22.94%), cardio/cerebrovascular disease (13.26%) and diabetes/diabetic complications (7.34%). Higher risks of unplanned readmissions were associated with diabetes (OR = 1.089, P = 0.001), use of clinical pathways (OR = 1.174, P < 0.001), and being discharged without doctor’s advice (OR = 1.485, P < 0.001). Lower risks were associated with basic medical insurances (OR ranging from 0.225 to 0.716, P < 0.001) and commercial medical insurance (OR = 0.636, P = 0.021), compared to self-paying for medical services. And patients aged 50 years old and above (OR ranging from 0.650 to 0.985, P < 0.05), with haemorrhagic stroke (OR = 0.467, P < 0.001), with length of stay more than 7 days in hospital (OR ranging from 0.082 to 0.566, P < 0.001), also had lower risks. Conclusions Age, type of stroke, medical insurance status, type of discharge, use of clinical pathways, length of hospital stay and comorbidities were the most influential factors for readmission within 31 days.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stroke</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Unplanned readmission</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hospitalization</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cover sheet of medical record</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Risk factor</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Baoyan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wan, Xia</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Xiaoping</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Xuezhong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lau, Alexander Y. L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yanning</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC neurology</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">18(2018), 1 vom: 26. Dez.</subfield><subfield code="w">(DE-627)326643664</subfield><subfield code="w">(DE-600)2041347-6</subfield><subfield code="x">1471-2377</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:18</subfield><subfield code="g">year:2018</subfield><subfield code="g">number:1</subfield><subfield code="g">day:26</subfield><subfield code="g">month:12</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12883-018-1209-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">18</subfield><subfield code="j">2018</subfield><subfield code="e">1</subfield><subfield code="b">26</subfield><subfield code="c">12</subfield></datafield></record></collection>
|
score |
7.401087 |