Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis
Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategie...
Ausführliche Beschreibung
Autor*in: |
Sun, Lin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2013 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
---|
Übergeordnetes Werk: |
Enthalten in: BMC musculoskeletal disorders - London : BioMed Central, 2000, 14(2013), 1 vom: 31. Mai |
---|---|
Übergeordnetes Werk: |
volume:14 ; year:2013 ; number:1 ; day:31 ; month:05 |
Links: |
---|
DOI / URN: |
10.1186/1471-2474-14-175 |
---|
Katalog-ID: |
SPR028023404 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028023404 | ||
003 | DE-627 | ||
005 | 20230519065847.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2013 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/1471-2474-14-175 |2 doi | |
035 | |a (DE-627)SPR028023404 | ||
035 | |a (SPR)1471-2474-14-175-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Sun, Lin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis |
264 | 1 | |c 2013 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( | ||
520 | |a Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategies for three-dimensional (3D) correction for IS. The purpose of this study is to compare the post-surgical results and technical features of the bilateral apical vertebral derotation technique by VCM against the VCA technique in patients with Lenke type 1 IS. Methods Forty-eight patients with Lenke type 1 IS were enrolled in the present prospective clinical assay. They were divided into groups A (bilateral apical vertebral derotation technique by VCM, n=24) and B (VCA technique, n=24). Radiographic parameters measured before and after surgery included the Cobb angle, thoracic kyphosis, and apical vertebral rotation. Scoliosis Research Society (SRS)-22 scores were evaluated during the final follow-up. The differences in the demographics, surgical details, and radiographic measurements between the two groups were determined using a T test. The Mann–Whitney U test was used to evaluate the differences in the SRS-22 scores. A value of P<0.05 was considered statistically significant. Results In the coronal plane, a significant difference was found in the correction rate of the major curve (group A: 84.8%, group B: 78.4%; P=0.045) and in the Cincinnati Correction Index between two groups (group A: 2.21, group B: 1.98; P=0.047). In the sagittal plane, no difference was found in the postoperative thoracic kyphosis between the two groups (P=0.328). In the transverse plane, no difference was found between the two groups in the correction rates of the rotation angle sagittal (P=0.298), rib hump (P=0.934), apical vertebral body-to-rib ratio (P=0.988), or apical rib spread difference (P=0.184). Patients underwent follow up for an average of 21.9 and 22.2 months in groups A and B, respectively. Results obtained at the final follow-up indicated no significant loss of correction. No differences were found in the SRS-22 scores between the two groups. No aortic or neurological complications were observed. Conclusions The 3D deformity of the spine was effectively corrected using the bilateral apical vertebral derotation technique by VCM and the VCA technique, and encouraging post-surgical results were obtained for patients with Lenke type 1 IS. The two techniques were effective in allowing 3D correctional force that was applied in different ways. | ||
650 | 4 | |a Idiopathic scoliosis |7 (dpeaa)DE-He213 | |
650 | 4 | |a Three-dimensional correction |7 (dpeaa)DE-He213 | |
650 | 4 | |a Bilateral apical vertebral derotation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Vertebral column manipulation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Vertebral coplanar alignment |7 (dpeaa)DE-He213 | |
700 | 1 | |a Song, Yueming |4 aut | |
700 | 1 | |a Liu, Limin |4 aut | |
700 | 1 | |a An, Yonggang |4 aut | |
700 | 1 | |a Zhou, Chunguang |4 aut | |
700 | 1 | |a Zhou, Zhongjie |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC musculoskeletal disorders |d London : BioMed Central, 2000 |g 14(2013), 1 vom: 31. Mai |w (DE-627)326643745 |w (DE-600)2041355-5 |x 1471-2474 |7 nnns |
773 | 1 | 8 | |g volume:14 |g year:2013 |g number:1 |g day:31 |g month:05 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/1471-2474-14-175 |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 14 |j 2013 |e 1 |b 31 |c 05 |
author_variant |
l s ls y s ys l l ll y a ya c z cz z z zz |
---|---|
matchkey_str |
article:14712474:2013----::iaeaaiavrerleoainehiubvrerlounaiuainoprdihetbacpaaainetehiuit |
hierarchy_sort_str |
2013 |
publishDate |
2013 |
allfields |
10.1186/1471-2474-14-175 doi (DE-627)SPR028023404 (SPR)1471-2474-14-175-e DE-627 ger DE-627 rakwb eng Sun, Lin verfasserin aut Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategies for three-dimensional (3D) correction for IS. The purpose of this study is to compare the post-surgical results and technical features of the bilateral apical vertebral derotation technique by VCM against the VCA technique in patients with Lenke type 1 IS. Methods Forty-eight patients with Lenke type 1 IS were enrolled in the present prospective clinical assay. They were divided into groups A (bilateral apical vertebral derotation technique by VCM, n=24) and B (VCA technique, n=24). Radiographic parameters measured before and after surgery included the Cobb angle, thoracic kyphosis, and apical vertebral rotation. Scoliosis Research Society (SRS)-22 scores were evaluated during the final follow-up. The differences in the demographics, surgical details, and radiographic measurements between the two groups were determined using a T test. The Mann–Whitney U test was used to evaluate the differences in the SRS-22 scores. A value of P<0.05 was considered statistically significant. Results In the coronal plane, a significant difference was found in the correction rate of the major curve (group A: 84.8%, group B: 78.4%; P=0.045) and in the Cincinnati Correction Index between two groups (group A: 2.21, group B: 1.98; P=0.047). In the sagittal plane, no difference was found in the postoperative thoracic kyphosis between the two groups (P=0.328). In the transverse plane, no difference was found between the two groups in the correction rates of the rotation angle sagittal (P=0.298), rib hump (P=0.934), apical vertebral body-to-rib ratio (P=0.988), or apical rib spread difference (P=0.184). Patients underwent follow up for an average of 21.9 and 22.2 months in groups A and B, respectively. Results obtained at the final follow-up indicated no significant loss of correction. No differences were found in the SRS-22 scores between the two groups. No aortic or neurological complications were observed. Conclusions The 3D deformity of the spine was effectively corrected using the bilateral apical vertebral derotation technique by VCM and the VCA technique, and encouraging post-surgical results were obtained for patients with Lenke type 1 IS. The two techniques were effective in allowing 3D correctional force that was applied in different ways. Idiopathic scoliosis (dpeaa)DE-He213 Three-dimensional correction (dpeaa)DE-He213 Bilateral apical vertebral derotation (dpeaa)DE-He213 Vertebral column manipulation (dpeaa)DE-He213 Vertebral coplanar alignment (dpeaa)DE-He213 Song, Yueming aut Liu, Limin aut An, Yonggang aut Zhou, Chunguang aut Zhou, Zhongjie aut Enthalten in BMC musculoskeletal disorders London : BioMed Central, 2000 14(2013), 1 vom: 31. Mai (DE-627)326643745 (DE-600)2041355-5 1471-2474 nnns volume:14 year:2013 number:1 day:31 month:05 https://dx.doi.org/10.1186/1471-2474-14-175 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 31 05 |
spelling |
10.1186/1471-2474-14-175 doi (DE-627)SPR028023404 (SPR)1471-2474-14-175-e DE-627 ger DE-627 rakwb eng Sun, Lin verfasserin aut Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategies for three-dimensional (3D) correction for IS. The purpose of this study is to compare the post-surgical results and technical features of the bilateral apical vertebral derotation technique by VCM against the VCA technique in patients with Lenke type 1 IS. Methods Forty-eight patients with Lenke type 1 IS were enrolled in the present prospective clinical assay. They were divided into groups A (bilateral apical vertebral derotation technique by VCM, n=24) and B (VCA technique, n=24). Radiographic parameters measured before and after surgery included the Cobb angle, thoracic kyphosis, and apical vertebral rotation. Scoliosis Research Society (SRS)-22 scores were evaluated during the final follow-up. The differences in the demographics, surgical details, and radiographic measurements between the two groups were determined using a T test. The Mann–Whitney U test was used to evaluate the differences in the SRS-22 scores. A value of P<0.05 was considered statistically significant. Results In the coronal plane, a significant difference was found in the correction rate of the major curve (group A: 84.8%, group B: 78.4%; P=0.045) and in the Cincinnati Correction Index between two groups (group A: 2.21, group B: 1.98; P=0.047). In the sagittal plane, no difference was found in the postoperative thoracic kyphosis between the two groups (P=0.328). In the transverse plane, no difference was found between the two groups in the correction rates of the rotation angle sagittal (P=0.298), rib hump (P=0.934), apical vertebral body-to-rib ratio (P=0.988), or apical rib spread difference (P=0.184). Patients underwent follow up for an average of 21.9 and 22.2 months in groups A and B, respectively. Results obtained at the final follow-up indicated no significant loss of correction. No differences were found in the SRS-22 scores between the two groups. No aortic or neurological complications were observed. Conclusions The 3D deformity of the spine was effectively corrected using the bilateral apical vertebral derotation technique by VCM and the VCA technique, and encouraging post-surgical results were obtained for patients with Lenke type 1 IS. The two techniques were effective in allowing 3D correctional force that was applied in different ways. Idiopathic scoliosis (dpeaa)DE-He213 Three-dimensional correction (dpeaa)DE-He213 Bilateral apical vertebral derotation (dpeaa)DE-He213 Vertebral column manipulation (dpeaa)DE-He213 Vertebral coplanar alignment (dpeaa)DE-He213 Song, Yueming aut Liu, Limin aut An, Yonggang aut Zhou, Chunguang aut Zhou, Zhongjie aut Enthalten in BMC musculoskeletal disorders London : BioMed Central, 2000 14(2013), 1 vom: 31. Mai (DE-627)326643745 (DE-600)2041355-5 1471-2474 nnns volume:14 year:2013 number:1 day:31 month:05 https://dx.doi.org/10.1186/1471-2474-14-175 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 31 05 |
allfields_unstemmed |
10.1186/1471-2474-14-175 doi (DE-627)SPR028023404 (SPR)1471-2474-14-175-e DE-627 ger DE-627 rakwb eng Sun, Lin verfasserin aut Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategies for three-dimensional (3D) correction for IS. The purpose of this study is to compare the post-surgical results and technical features of the bilateral apical vertebral derotation technique by VCM against the VCA technique in patients with Lenke type 1 IS. Methods Forty-eight patients with Lenke type 1 IS were enrolled in the present prospective clinical assay. They were divided into groups A (bilateral apical vertebral derotation technique by VCM, n=24) and B (VCA technique, n=24). Radiographic parameters measured before and after surgery included the Cobb angle, thoracic kyphosis, and apical vertebral rotation. Scoliosis Research Society (SRS)-22 scores were evaluated during the final follow-up. The differences in the demographics, surgical details, and radiographic measurements between the two groups were determined using a T test. The Mann–Whitney U test was used to evaluate the differences in the SRS-22 scores. A value of P<0.05 was considered statistically significant. Results In the coronal plane, a significant difference was found in the correction rate of the major curve (group A: 84.8%, group B: 78.4%; P=0.045) and in the Cincinnati Correction Index between two groups (group A: 2.21, group B: 1.98; P=0.047). In the sagittal plane, no difference was found in the postoperative thoracic kyphosis between the two groups (P=0.328). In the transverse plane, no difference was found between the two groups in the correction rates of the rotation angle sagittal (P=0.298), rib hump (P=0.934), apical vertebral body-to-rib ratio (P=0.988), or apical rib spread difference (P=0.184). Patients underwent follow up for an average of 21.9 and 22.2 months in groups A and B, respectively. Results obtained at the final follow-up indicated no significant loss of correction. No differences were found in the SRS-22 scores between the two groups. No aortic or neurological complications were observed. Conclusions The 3D deformity of the spine was effectively corrected using the bilateral apical vertebral derotation technique by VCM and the VCA technique, and encouraging post-surgical results were obtained for patients with Lenke type 1 IS. The two techniques were effective in allowing 3D correctional force that was applied in different ways. Idiopathic scoliosis (dpeaa)DE-He213 Three-dimensional correction (dpeaa)DE-He213 Bilateral apical vertebral derotation (dpeaa)DE-He213 Vertebral column manipulation (dpeaa)DE-He213 Vertebral coplanar alignment (dpeaa)DE-He213 Song, Yueming aut Liu, Limin aut An, Yonggang aut Zhou, Chunguang aut Zhou, Zhongjie aut Enthalten in BMC musculoskeletal disorders London : BioMed Central, 2000 14(2013), 1 vom: 31. Mai (DE-627)326643745 (DE-600)2041355-5 1471-2474 nnns volume:14 year:2013 number:1 day:31 month:05 https://dx.doi.org/10.1186/1471-2474-14-175 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 31 05 |
allfieldsGer |
10.1186/1471-2474-14-175 doi (DE-627)SPR028023404 (SPR)1471-2474-14-175-e DE-627 ger DE-627 rakwb eng Sun, Lin verfasserin aut Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategies for three-dimensional (3D) correction for IS. The purpose of this study is to compare the post-surgical results and technical features of the bilateral apical vertebral derotation technique by VCM against the VCA technique in patients with Lenke type 1 IS. Methods Forty-eight patients with Lenke type 1 IS were enrolled in the present prospective clinical assay. They were divided into groups A (bilateral apical vertebral derotation technique by VCM, n=24) and B (VCA technique, n=24). Radiographic parameters measured before and after surgery included the Cobb angle, thoracic kyphosis, and apical vertebral rotation. Scoliosis Research Society (SRS)-22 scores were evaluated during the final follow-up. The differences in the demographics, surgical details, and radiographic measurements between the two groups were determined using a T test. The Mann–Whitney U test was used to evaluate the differences in the SRS-22 scores. A value of P<0.05 was considered statistically significant. Results In the coronal plane, a significant difference was found in the correction rate of the major curve (group A: 84.8%, group B: 78.4%; P=0.045) and in the Cincinnati Correction Index between two groups (group A: 2.21, group B: 1.98; P=0.047). In the sagittal plane, no difference was found in the postoperative thoracic kyphosis between the two groups (P=0.328). In the transverse plane, no difference was found between the two groups in the correction rates of the rotation angle sagittal (P=0.298), rib hump (P=0.934), apical vertebral body-to-rib ratio (P=0.988), or apical rib spread difference (P=0.184). Patients underwent follow up for an average of 21.9 and 22.2 months in groups A and B, respectively. Results obtained at the final follow-up indicated no significant loss of correction. No differences were found in the SRS-22 scores between the two groups. No aortic or neurological complications were observed. Conclusions The 3D deformity of the spine was effectively corrected using the bilateral apical vertebral derotation technique by VCM and the VCA technique, and encouraging post-surgical results were obtained for patients with Lenke type 1 IS. The two techniques were effective in allowing 3D correctional force that was applied in different ways. Idiopathic scoliosis (dpeaa)DE-He213 Three-dimensional correction (dpeaa)DE-He213 Bilateral apical vertebral derotation (dpeaa)DE-He213 Vertebral column manipulation (dpeaa)DE-He213 Vertebral coplanar alignment (dpeaa)DE-He213 Song, Yueming aut Liu, Limin aut An, Yonggang aut Zhou, Chunguang aut Zhou, Zhongjie aut Enthalten in BMC musculoskeletal disorders London : BioMed Central, 2000 14(2013), 1 vom: 31. Mai (DE-627)326643745 (DE-600)2041355-5 1471-2474 nnns volume:14 year:2013 number:1 day:31 month:05 https://dx.doi.org/10.1186/1471-2474-14-175 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 31 05 |
allfieldsSound |
10.1186/1471-2474-14-175 doi (DE-627)SPR028023404 (SPR)1471-2474-14-175-e DE-627 ger DE-627 rakwb eng Sun, Lin verfasserin aut Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis 2013 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategies for three-dimensional (3D) correction for IS. The purpose of this study is to compare the post-surgical results and technical features of the bilateral apical vertebral derotation technique by VCM against the VCA technique in patients with Lenke type 1 IS. Methods Forty-eight patients with Lenke type 1 IS were enrolled in the present prospective clinical assay. They were divided into groups A (bilateral apical vertebral derotation technique by VCM, n=24) and B (VCA technique, n=24). Radiographic parameters measured before and after surgery included the Cobb angle, thoracic kyphosis, and apical vertebral rotation. Scoliosis Research Society (SRS)-22 scores were evaluated during the final follow-up. The differences in the demographics, surgical details, and radiographic measurements between the two groups were determined using a T test. The Mann–Whitney U test was used to evaluate the differences in the SRS-22 scores. A value of P<0.05 was considered statistically significant. Results In the coronal plane, a significant difference was found in the correction rate of the major curve (group A: 84.8%, group B: 78.4%; P=0.045) and in the Cincinnati Correction Index between two groups (group A: 2.21, group B: 1.98; P=0.047). In the sagittal plane, no difference was found in the postoperative thoracic kyphosis between the two groups (P=0.328). In the transverse plane, no difference was found between the two groups in the correction rates of the rotation angle sagittal (P=0.298), rib hump (P=0.934), apical vertebral body-to-rib ratio (P=0.988), or apical rib spread difference (P=0.184). Patients underwent follow up for an average of 21.9 and 22.2 months in groups A and B, respectively. Results obtained at the final follow-up indicated no significant loss of correction. No differences were found in the SRS-22 scores between the two groups. No aortic or neurological complications were observed. Conclusions The 3D deformity of the spine was effectively corrected using the bilateral apical vertebral derotation technique by VCM and the VCA technique, and encouraging post-surgical results were obtained for patients with Lenke type 1 IS. The two techniques were effective in allowing 3D correctional force that was applied in different ways. Idiopathic scoliosis (dpeaa)DE-He213 Three-dimensional correction (dpeaa)DE-He213 Bilateral apical vertebral derotation (dpeaa)DE-He213 Vertebral column manipulation (dpeaa)DE-He213 Vertebral coplanar alignment (dpeaa)DE-He213 Song, Yueming aut Liu, Limin aut An, Yonggang aut Zhou, Chunguang aut Zhou, Zhongjie aut Enthalten in BMC musculoskeletal disorders London : BioMed Central, 2000 14(2013), 1 vom: 31. Mai (DE-627)326643745 (DE-600)2041355-5 1471-2474 nnns volume:14 year:2013 number:1 day:31 month:05 https://dx.doi.org/10.1186/1471-2474-14-175 kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 14 2013 1 31 05 |
language |
English |
source |
Enthalten in BMC musculoskeletal disorders 14(2013), 1 vom: 31. Mai volume:14 year:2013 number:1 day:31 month:05 |
sourceStr |
Enthalten in BMC musculoskeletal disorders 14(2013), 1 vom: 31. Mai volume:14 year:2013 number:1 day:31 month:05 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Idiopathic scoliosis Three-dimensional correction Bilateral apical vertebral derotation Vertebral column manipulation Vertebral coplanar alignment |
isfreeaccess_bool |
true |
container_title |
BMC musculoskeletal disorders |
authorswithroles_txt_mv |
Sun, Lin @@aut@@ Song, Yueming @@aut@@ Liu, Limin @@aut@@ An, Yonggang @@aut@@ Zhou, Chunguang @@aut@@ Zhou, Zhongjie @@aut@@ |
publishDateDaySort_date |
2013-05-31T00:00:00Z |
hierarchy_top_id |
326643745 |
id |
SPR028023404 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028023404</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519065847.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2474-14-175</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028023404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2474-14-175-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategies for three-dimensional (3D) correction for IS. The purpose of this study is to compare the post-surgical results and technical features of the bilateral apical vertebral derotation technique by VCM against the VCA technique in patients with Lenke type 1 IS. Methods Forty-eight patients with Lenke type 1 IS were enrolled in the present prospective clinical assay. They were divided into groups A (bilateral apical vertebral derotation technique by VCM, n=24) and B (VCA technique, n=24). Radiographic parameters measured before and after surgery included the Cobb angle, thoracic kyphosis, and apical vertebral rotation. Scoliosis Research Society (SRS)-22 scores were evaluated during the final follow-up. The differences in the demographics, surgical details, and radiographic measurements between the two groups were determined using a T test. The Mann–Whitney U test was used to evaluate the differences in the SRS-22 scores. A value of P<0.05 was considered statistically significant. Results In the coronal plane, a significant difference was found in the correction rate of the major curve (group A: 84.8%, group B: 78.4%; P=0.045) and in the Cincinnati Correction Index between two groups (group A: 2.21, group B: 1.98; P=0.047). In the sagittal plane, no difference was found in the postoperative thoracic kyphosis between the two groups (P=0.328). In the transverse plane, no difference was found between the two groups in the correction rates of the rotation angle sagittal (P=0.298), rib hump (P=0.934), apical vertebral body-to-rib ratio (P=0.988), or apical rib spread difference (P=0.184). Patients underwent follow up for an average of 21.9 and 22.2 months in groups A and B, respectively. Results obtained at the final follow-up indicated no significant loss of correction. No differences were found in the SRS-22 scores between the two groups. No aortic or neurological complications were observed. Conclusions The 3D deformity of the spine was effectively corrected using the bilateral apical vertebral derotation technique by VCM and the VCA technique, and encouraging post-surgical results were obtained for patients with Lenke type 1 IS. The two techniques were effective in allowing 3D correctional force that was applied in different ways.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Idiopathic scoliosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-dimensional correction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bilateral apical vertebral derotation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertebral column manipulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertebral coplanar alignment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yueming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Limin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">An, Yonggang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Chunguang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Zhongjie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC musculoskeletal disorders</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">14(2013), 1 vom: 31. Mai</subfield><subfield code="w">(DE-627)326643745</subfield><subfield code="w">(DE-600)2041355-5</subfield><subfield code="x">1471-2474</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2474-14-175</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
author |
Sun, Lin |
spellingShingle |
Sun, Lin misc Idiopathic scoliosis misc Three-dimensional correction misc Bilateral apical vertebral derotation misc Vertebral column manipulation misc Vertebral coplanar alignment Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis |
authorStr |
Sun, Lin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)326643745 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1471-2474 |
topic_title |
Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis Idiopathic scoliosis (dpeaa)DE-He213 Three-dimensional correction (dpeaa)DE-He213 Bilateral apical vertebral derotation (dpeaa)DE-He213 Vertebral column manipulation (dpeaa)DE-He213 Vertebral coplanar alignment (dpeaa)DE-He213 |
topic |
misc Idiopathic scoliosis misc Three-dimensional correction misc Bilateral apical vertebral derotation misc Vertebral column manipulation misc Vertebral coplanar alignment |
topic_unstemmed |
misc Idiopathic scoliosis misc Three-dimensional correction misc Bilateral apical vertebral derotation misc Vertebral column manipulation misc Vertebral coplanar alignment |
topic_browse |
misc Idiopathic scoliosis misc Three-dimensional correction misc Bilateral apical vertebral derotation misc Vertebral column manipulation misc Vertebral coplanar alignment |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC musculoskeletal disorders |
hierarchy_parent_id |
326643745 |
hierarchy_top_title |
BMC musculoskeletal disorders |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)326643745 (DE-600)2041355-5 |
title |
Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis |
ctrlnum |
(DE-627)SPR028023404 (SPR)1471-2474-14-175-e |
title_full |
Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis |
author_sort |
Sun, Lin |
journal |
BMC musculoskeletal disorders |
journalStr |
BMC musculoskeletal disorders |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2013 |
contenttype_str_mv |
txt |
author_browse |
Sun, Lin Song, Yueming Liu, Limin An, Yonggang Zhou, Chunguang Zhou, Zhongjie |
container_volume |
14 |
format_se |
Elektronische Aufsätze |
author-letter |
Sun, Lin |
doi_str_mv |
10.1186/1471-2474-14-175 |
title_sort |
bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis |
title_auth |
Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis |
abstract |
Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategies for three-dimensional (3D) correction for IS. The purpose of this study is to compare the post-surgical results and technical features of the bilateral apical vertebral derotation technique by VCM against the VCA technique in patients with Lenke type 1 IS. Methods Forty-eight patients with Lenke type 1 IS were enrolled in the present prospective clinical assay. They were divided into groups A (bilateral apical vertebral derotation technique by VCM, n=24) and B (VCA technique, n=24). Radiographic parameters measured before and after surgery included the Cobb angle, thoracic kyphosis, and apical vertebral rotation. Scoliosis Research Society (SRS)-22 scores were evaluated during the final follow-up. The differences in the demographics, surgical details, and radiographic measurements between the two groups were determined using a T test. The Mann–Whitney U test was used to evaluate the differences in the SRS-22 scores. A value of P<0.05 was considered statistically significant. Results In the coronal plane, a significant difference was found in the correction rate of the major curve (group A: 84.8%, group B: 78.4%; P=0.045) and in the Cincinnati Correction Index between two groups (group A: 2.21, group B: 1.98; P=0.047). In the sagittal plane, no difference was found in the postoperative thoracic kyphosis between the two groups (P=0.328). In the transverse plane, no difference was found between the two groups in the correction rates of the rotation angle sagittal (P=0.298), rib hump (P=0.934), apical vertebral body-to-rib ratio (P=0.988), or apical rib spread difference (P=0.184). Patients underwent follow up for an average of 21.9 and 22.2 months in groups A and B, respectively. Results obtained at the final follow-up indicated no significant loss of correction. No differences were found in the SRS-22 scores between the two groups. No aortic or neurological complications were observed. Conclusions The 3D deformity of the spine was effectively corrected using the bilateral apical vertebral derotation technique by VCM and the VCA technique, and encouraging post-surgical results were obtained for patients with Lenke type 1 IS. The two techniques were effective in allowing 3D correctional force that was applied in different ways. © Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstractGer |
Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategies for three-dimensional (3D) correction for IS. The purpose of this study is to compare the post-surgical results and technical features of the bilateral apical vertebral derotation technique by VCM against the VCA technique in patients with Lenke type 1 IS. Methods Forty-eight patients with Lenke type 1 IS were enrolled in the present prospective clinical assay. They were divided into groups A (bilateral apical vertebral derotation technique by VCM, n=24) and B (VCA technique, n=24). Radiographic parameters measured before and after surgery included the Cobb angle, thoracic kyphosis, and apical vertebral rotation. Scoliosis Research Society (SRS)-22 scores were evaluated during the final follow-up. The differences in the demographics, surgical details, and radiographic measurements between the two groups were determined using a T test. The Mann–Whitney U test was used to evaluate the differences in the SRS-22 scores. A value of P<0.05 was considered statistically significant. Results In the coronal plane, a significant difference was found in the correction rate of the major curve (group A: 84.8%, group B: 78.4%; P=0.045) and in the Cincinnati Correction Index between two groups (group A: 2.21, group B: 1.98; P=0.047). In the sagittal plane, no difference was found in the postoperative thoracic kyphosis between the two groups (P=0.328). In the transverse plane, no difference was found between the two groups in the correction rates of the rotation angle sagittal (P=0.298), rib hump (P=0.934), apical vertebral body-to-rib ratio (P=0.988), or apical rib spread difference (P=0.184). Patients underwent follow up for an average of 21.9 and 22.2 months in groups A and B, respectively. Results obtained at the final follow-up indicated no significant loss of correction. No differences were found in the SRS-22 scores between the two groups. No aortic or neurological complications were observed. Conclusions The 3D deformity of the spine was effectively corrected using the bilateral apical vertebral derotation technique by VCM and the VCA technique, and encouraging post-surgical results were obtained for patients with Lenke type 1 IS. The two techniques were effective in allowing 3D correctional force that was applied in different ways. © Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
abstract_unstemmed |
Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategies for three-dimensional (3D) correction for IS. The purpose of this study is to compare the post-surgical results and technical features of the bilateral apical vertebral derotation technique by VCM against the VCA technique in patients with Lenke type 1 IS. Methods Forty-eight patients with Lenke type 1 IS were enrolled in the present prospective clinical assay. They were divided into groups A (bilateral apical vertebral derotation technique by VCM, n=24) and B (VCA technique, n=24). Radiographic parameters measured before and after surgery included the Cobb angle, thoracic kyphosis, and apical vertebral rotation. Scoliosis Research Society (SRS)-22 scores were evaluated during the final follow-up. The differences in the demographics, surgical details, and radiographic measurements between the two groups were determined using a T test. The Mann–Whitney U test was used to evaluate the differences in the SRS-22 scores. A value of P<0.05 was considered statistically significant. Results In the coronal plane, a significant difference was found in the correction rate of the major curve (group A: 84.8%, group B: 78.4%; P=0.045) and in the Cincinnati Correction Index between two groups (group A: 2.21, group B: 1.98; P=0.047). In the sagittal plane, no difference was found in the postoperative thoracic kyphosis between the two groups (P=0.328). In the transverse plane, no difference was found between the two groups in the correction rates of the rotation angle sagittal (P=0.298), rib hump (P=0.934), apical vertebral body-to-rib ratio (P=0.988), or apical rib spread difference (P=0.184). Patients underwent follow up for an average of 21.9 and 22.2 months in groups A and B, respectively. Results obtained at the final follow-up indicated no significant loss of correction. No differences were found in the SRS-22 scores between the two groups. No aortic or neurological complications were observed. Conclusions The 3D deformity of the spine was effectively corrected using the bilateral apical vertebral derotation technique by VCM and the VCA technique, and encouraging post-surgical results were obtained for patients with Lenke type 1 IS. The two techniques were effective in allowing 3D correctional force that was applied in different ways. © Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis |
url |
https://dx.doi.org/10.1186/1471-2474-14-175 |
remote_bool |
true |
author2 |
Song, Yueming Liu, Limin An, Yonggang Zhou, Chunguang Zhou, Zhongjie |
author2Str |
Song, Yueming Liu, Limin An, Yonggang Zhou, Chunguang Zhou, Zhongjie |
ppnlink |
326643745 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/1471-2474-14-175 |
up_date |
2024-07-03T16:46:14.963Z |
_version_ |
1803577117866196993 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028023404</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519065847.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2013 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/1471-2474-14-175</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028023404</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)1471-2474-14-175-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sun, Lin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bilateral apical vertebral derotation technique by vertebral column manipulation compared with vertebral coplanar alignment technique in the correction of lenke type 1 idiopathic scoliosis</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2013</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Sun et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Widely used rod rotation and translation techniques for idiopathic scoliosis (IS) are effective in correcting spinal coronal deformity. Bilateral apical vertebral derotation technique by vertebral column manipulation (VCM) and vertebral coplanar alignment (VCA) technique are two strategies for three-dimensional (3D) correction for IS. The purpose of this study is to compare the post-surgical results and technical features of the bilateral apical vertebral derotation technique by VCM against the VCA technique in patients with Lenke type 1 IS. Methods Forty-eight patients with Lenke type 1 IS were enrolled in the present prospective clinical assay. They were divided into groups A (bilateral apical vertebral derotation technique by VCM, n=24) and B (VCA technique, n=24). Radiographic parameters measured before and after surgery included the Cobb angle, thoracic kyphosis, and apical vertebral rotation. Scoliosis Research Society (SRS)-22 scores were evaluated during the final follow-up. The differences in the demographics, surgical details, and radiographic measurements between the two groups were determined using a T test. The Mann–Whitney U test was used to evaluate the differences in the SRS-22 scores. A value of P<0.05 was considered statistically significant. Results In the coronal plane, a significant difference was found in the correction rate of the major curve (group A: 84.8%, group B: 78.4%; P=0.045) and in the Cincinnati Correction Index between two groups (group A: 2.21, group B: 1.98; P=0.047). In the sagittal plane, no difference was found in the postoperative thoracic kyphosis between the two groups (P=0.328). In the transverse plane, no difference was found between the two groups in the correction rates of the rotation angle sagittal (P=0.298), rib hump (P=0.934), apical vertebral body-to-rib ratio (P=0.988), or apical rib spread difference (P=0.184). Patients underwent follow up for an average of 21.9 and 22.2 months in groups A and B, respectively. Results obtained at the final follow-up indicated no significant loss of correction. No differences were found in the SRS-22 scores between the two groups. No aortic or neurological complications were observed. Conclusions The 3D deformity of the spine was effectively corrected using the bilateral apical vertebral derotation technique by VCM and the VCA technique, and encouraging post-surgical results were obtained for patients with Lenke type 1 IS. The two techniques were effective in allowing 3D correctional force that was applied in different ways.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Idiopathic scoliosis</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Three-dimensional correction</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bilateral apical vertebral derotation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertebral column manipulation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vertebral coplanar alignment</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Yueming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Limin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">An, Yonggang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Chunguang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhou, Zhongjie</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC musculoskeletal disorders</subfield><subfield code="d">London : BioMed Central, 2000</subfield><subfield code="g">14(2013), 1 vom: 31. Mai</subfield><subfield code="w">(DE-627)326643745</subfield><subfield code="w">(DE-600)2041355-5</subfield><subfield code="x">1471-2474</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:14</subfield><subfield code="g">year:2013</subfield><subfield code="g">number:1</subfield><subfield code="g">day:31</subfield><subfield code="g">month:05</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/1471-2474-14-175</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">14</subfield><subfield code="j">2013</subfield><subfield code="e">1</subfield><subfield code="b">31</subfield><subfield code="c">05</subfield></datafield></record></collection>
|
score |
7.4016542 |