Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method
Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weig...
Ausführliche Beschreibung
Autor*in: |
Taherkhani, Nasrin [verfasserIn] |
---|
Format: |
E-Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2019 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s). 2019 |
---|
Übergeordnetes Werk: |
Enthalten in: BMC medical informatics and decision making - London : BioMed Central, 2001, 19(2019), 1 vom: 06. Sept. |
---|---|
Übergeordnetes Werk: |
volume:19 ; year:2019 ; number:1 ; day:06 ; month:09 |
Links: |
---|
DOI / URN: |
10.1186/s12911-019-0892-y |
---|
Katalog-ID: |
SPR028219724 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | SPR028219724 | ||
003 | DE-627 | ||
005 | 20230519201836.0 | ||
007 | cr uuu---uuuuu | ||
008 | 201007s2019 xx |||||o 00| ||eng c | ||
024 | 7 | |a 10.1186/s12911-019-0892-y |2 doi | |
035 | |a (DE-627)SPR028219724 | ||
035 | |a (SPR)s12911-019-0892-y-e | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
100 | 1 | |a Taherkhani, Nasrin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method |
264 | 1 | |c 2019 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a Computermedien |b c |2 rdamedia | ||
338 | |a Online-Ressource |b cr |2 rdacarrier | ||
500 | |a © The Author(s). 2019 | ||
520 | |a Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. Methods To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. Results The results showed that the highest weight belongs to “Medical emergency” criterion and the lowest weight to “5 HLA mismatches”, which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model’s superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. Conclusions This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system. | ||
650 | 4 | |a Kidney allocation |7 (dpeaa)DE-He213 | |
650 | 4 | |a Fuzzy Delphi method |7 (dpeaa)DE-He213 | |
650 | 4 | |a Intuitionistic fuzzy AHP |7 (dpeaa)DE-He213 | |
650 | 4 | |a Kidney allocation criteria |7 (dpeaa)DE-He213 | |
700 | 1 | |a Sepehri, Mohammad Mehdi |0 (orcid)0000-0002-9920-7452 |4 aut | |
700 | 1 | |a Shafaghi, Shadi |4 aut | |
700 | 1 | |a Khatibi, Toktam |4 aut | |
773 | 0 | 8 | |i Enthalten in |t BMC medical informatics and decision making |d London : BioMed Central, 2001 |g 19(2019), 1 vom: 06. Sept. |w (DE-627)328977306 |w (DE-600)2046490-3 |x 1472-6947 |7 nnns |
773 | 1 | 8 | |g volume:19 |g year:2019 |g number:1 |g day:06 |g month:09 |
856 | 4 | 0 | |u https://dx.doi.org/10.1186/s12911-019-0892-y |z kostenfrei |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_SPRINGER | ||
912 | |a SSG-OLC-PHA | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_23 | ||
912 | |a GBV_ILN_24 | ||
912 | |a GBV_ILN_31 | ||
912 | |a GBV_ILN_39 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_60 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_63 | ||
912 | |a GBV_ILN_65 | ||
912 | |a GBV_ILN_69 | ||
912 | |a GBV_ILN_73 | ||
912 | |a GBV_ILN_74 | ||
912 | |a GBV_ILN_95 | ||
912 | |a GBV_ILN_105 | ||
912 | |a GBV_ILN_110 | ||
912 | |a GBV_ILN_151 | ||
912 | |a GBV_ILN_161 | ||
912 | |a GBV_ILN_170 | ||
912 | |a GBV_ILN_206 | ||
912 | |a GBV_ILN_213 | ||
912 | |a GBV_ILN_230 | ||
912 | |a GBV_ILN_285 | ||
912 | |a GBV_ILN_293 | ||
912 | |a GBV_ILN_602 | ||
912 | |a GBV_ILN_702 | ||
912 | |a GBV_ILN_2001 | ||
912 | |a GBV_ILN_2003 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2006 | ||
912 | |a GBV_ILN_2008 | ||
912 | |a GBV_ILN_2009 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2011 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2015 | ||
912 | |a GBV_ILN_2020 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2025 | ||
912 | |a GBV_ILN_2031 | ||
912 | |a GBV_ILN_2038 | ||
912 | |a GBV_ILN_2044 | ||
912 | |a GBV_ILN_2048 | ||
912 | |a GBV_ILN_2050 | ||
912 | |a GBV_ILN_2055 | ||
912 | |a GBV_ILN_2056 | ||
912 | |a GBV_ILN_2057 | ||
912 | |a GBV_ILN_2061 | ||
912 | |a GBV_ILN_2111 | ||
912 | |a GBV_ILN_2113 | ||
912 | |a GBV_ILN_2190 | ||
912 | |a GBV_ILN_4012 | ||
912 | |a GBV_ILN_4037 | ||
912 | |a GBV_ILN_4112 | ||
912 | |a GBV_ILN_4125 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4249 | ||
912 | |a GBV_ILN_4305 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4313 | ||
912 | |a GBV_ILN_4322 | ||
912 | |a GBV_ILN_4323 | ||
912 | |a GBV_ILN_4324 | ||
912 | |a GBV_ILN_4325 | ||
912 | |a GBV_ILN_4326 | ||
912 | |a GBV_ILN_4335 | ||
912 | |a GBV_ILN_4338 | ||
912 | |a GBV_ILN_4367 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 19 |j 2019 |e 1 |b 06 |c 09 |
author_variant |
n t nt m m s mm mms s s ss t k tk |
---|---|
matchkey_str |
article:14726947:2019----::dniiainnwihigfinyloainrtranvlu |
hierarchy_sort_str |
2019 |
publishDate |
2019 |
allfields |
10.1186/s12911-019-0892-y doi (DE-627)SPR028219724 (SPR)s12911-019-0892-y-e DE-627 ger DE-627 rakwb eng Taherkhani, Nasrin verfasserin aut Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. Methods To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. Results The results showed that the highest weight belongs to “Medical emergency” criterion and the lowest weight to “5 HLA mismatches”, which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model’s superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. Conclusions This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system. Kidney allocation (dpeaa)DE-He213 Fuzzy Delphi method (dpeaa)DE-He213 Intuitionistic fuzzy AHP (dpeaa)DE-He213 Kidney allocation criteria (dpeaa)DE-He213 Sepehri, Mohammad Mehdi (orcid)0000-0002-9920-7452 aut Shafaghi, Shadi aut Khatibi, Toktam aut Enthalten in BMC medical informatics and decision making London : BioMed Central, 2001 19(2019), 1 vom: 06. Sept. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:19 year:2019 number:1 day:06 month:09 https://dx.doi.org/10.1186/s12911-019-0892-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 1 06 09 |
spelling |
10.1186/s12911-019-0892-y doi (DE-627)SPR028219724 (SPR)s12911-019-0892-y-e DE-627 ger DE-627 rakwb eng Taherkhani, Nasrin verfasserin aut Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. Methods To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. Results The results showed that the highest weight belongs to “Medical emergency” criterion and the lowest weight to “5 HLA mismatches”, which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model’s superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. Conclusions This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system. Kidney allocation (dpeaa)DE-He213 Fuzzy Delphi method (dpeaa)DE-He213 Intuitionistic fuzzy AHP (dpeaa)DE-He213 Kidney allocation criteria (dpeaa)DE-He213 Sepehri, Mohammad Mehdi (orcid)0000-0002-9920-7452 aut Shafaghi, Shadi aut Khatibi, Toktam aut Enthalten in BMC medical informatics and decision making London : BioMed Central, 2001 19(2019), 1 vom: 06. Sept. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:19 year:2019 number:1 day:06 month:09 https://dx.doi.org/10.1186/s12911-019-0892-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 1 06 09 |
allfields_unstemmed |
10.1186/s12911-019-0892-y doi (DE-627)SPR028219724 (SPR)s12911-019-0892-y-e DE-627 ger DE-627 rakwb eng Taherkhani, Nasrin verfasserin aut Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. Methods To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. Results The results showed that the highest weight belongs to “Medical emergency” criterion and the lowest weight to “5 HLA mismatches”, which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model’s superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. Conclusions This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system. Kidney allocation (dpeaa)DE-He213 Fuzzy Delphi method (dpeaa)DE-He213 Intuitionistic fuzzy AHP (dpeaa)DE-He213 Kidney allocation criteria (dpeaa)DE-He213 Sepehri, Mohammad Mehdi (orcid)0000-0002-9920-7452 aut Shafaghi, Shadi aut Khatibi, Toktam aut Enthalten in BMC medical informatics and decision making London : BioMed Central, 2001 19(2019), 1 vom: 06. Sept. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:19 year:2019 number:1 day:06 month:09 https://dx.doi.org/10.1186/s12911-019-0892-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 1 06 09 |
allfieldsGer |
10.1186/s12911-019-0892-y doi (DE-627)SPR028219724 (SPR)s12911-019-0892-y-e DE-627 ger DE-627 rakwb eng Taherkhani, Nasrin verfasserin aut Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. Methods To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. Results The results showed that the highest weight belongs to “Medical emergency” criterion and the lowest weight to “5 HLA mismatches”, which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model’s superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. Conclusions This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system. Kidney allocation (dpeaa)DE-He213 Fuzzy Delphi method (dpeaa)DE-He213 Intuitionistic fuzzy AHP (dpeaa)DE-He213 Kidney allocation criteria (dpeaa)DE-He213 Sepehri, Mohammad Mehdi (orcid)0000-0002-9920-7452 aut Shafaghi, Shadi aut Khatibi, Toktam aut Enthalten in BMC medical informatics and decision making London : BioMed Central, 2001 19(2019), 1 vom: 06. Sept. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:19 year:2019 number:1 day:06 month:09 https://dx.doi.org/10.1186/s12911-019-0892-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 1 06 09 |
allfieldsSound |
10.1186/s12911-019-0892-y doi (DE-627)SPR028219724 (SPR)s12911-019-0892-y-e DE-627 ger DE-627 rakwb eng Taherkhani, Nasrin verfasserin aut Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method 2019 Text txt rdacontent Computermedien c rdamedia Online-Ressource cr rdacarrier © The Author(s). 2019 Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. Methods To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. Results The results showed that the highest weight belongs to “Medical emergency” criterion and the lowest weight to “5 HLA mismatches”, which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model’s superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. Conclusions This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system. Kidney allocation (dpeaa)DE-He213 Fuzzy Delphi method (dpeaa)DE-He213 Intuitionistic fuzzy AHP (dpeaa)DE-He213 Kidney allocation criteria (dpeaa)DE-He213 Sepehri, Mohammad Mehdi (orcid)0000-0002-9920-7452 aut Shafaghi, Shadi aut Khatibi, Toktam aut Enthalten in BMC medical informatics and decision making London : BioMed Central, 2001 19(2019), 1 vom: 06. Sept. (DE-627)328977306 (DE-600)2046490-3 1472-6947 nnns volume:19 year:2019 number:1 day:06 month:09 https://dx.doi.org/10.1186/s12911-019-0892-y kostenfrei Volltext GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 AR 19 2019 1 06 09 |
language |
English |
source |
Enthalten in BMC medical informatics and decision making 19(2019), 1 vom: 06. Sept. volume:19 year:2019 number:1 day:06 month:09 |
sourceStr |
Enthalten in BMC medical informatics and decision making 19(2019), 1 vom: 06. Sept. volume:19 year:2019 number:1 day:06 month:09 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Kidney allocation Fuzzy Delphi method Intuitionistic fuzzy AHP Kidney allocation criteria |
isfreeaccess_bool |
true |
container_title |
BMC medical informatics and decision making |
authorswithroles_txt_mv |
Taherkhani, Nasrin @@aut@@ Sepehri, Mohammad Mehdi @@aut@@ Shafaghi, Shadi @@aut@@ Khatibi, Toktam @@aut@@ |
publishDateDaySort_date |
2019-09-06T00:00:00Z |
hierarchy_top_id |
328977306 |
id |
SPR028219724 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028219724</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519201836.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12911-019-0892-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028219724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12911-019-0892-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Taherkhani, Nasrin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. Methods To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. Results The results showed that the highest weight belongs to “Medical emergency” criterion and the lowest weight to “5 HLA mismatches”, which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model’s superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. Conclusions This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kidney allocation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy Delphi method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intuitionistic fuzzy AHP</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kidney allocation criteria</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sepehri, Mohammad Mehdi</subfield><subfield code="0">(orcid)0000-0002-9920-7452</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shafaghi, Shadi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khatibi, Toktam</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical informatics and decision making</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">19(2019), 1 vom: 06. Sept.</subfield><subfield code="w">(DE-627)328977306</subfield><subfield code="w">(DE-600)2046490-3</subfield><subfield code="x">1472-6947</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12911-019-0892-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
author |
Taherkhani, Nasrin |
spellingShingle |
Taherkhani, Nasrin misc Kidney allocation misc Fuzzy Delphi method misc Intuitionistic fuzzy AHP misc Kidney allocation criteria Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method |
authorStr |
Taherkhani, Nasrin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)328977306 |
format |
electronic Article |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
springer |
remote_str |
true |
illustrated |
Not Illustrated |
issn |
1472-6947 |
topic_title |
Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method Kidney allocation (dpeaa)DE-He213 Fuzzy Delphi method (dpeaa)DE-He213 Intuitionistic fuzzy AHP (dpeaa)DE-He213 Kidney allocation criteria (dpeaa)DE-He213 |
topic |
misc Kidney allocation misc Fuzzy Delphi method misc Intuitionistic fuzzy AHP misc Kidney allocation criteria |
topic_unstemmed |
misc Kidney allocation misc Fuzzy Delphi method misc Intuitionistic fuzzy AHP misc Kidney allocation criteria |
topic_browse |
misc Kidney allocation misc Fuzzy Delphi method misc Intuitionistic fuzzy AHP misc Kidney allocation criteria |
format_facet |
Elektronische Aufsätze Aufsätze Elektronische Ressource |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
cr |
hierarchy_parent_title |
BMC medical informatics and decision making |
hierarchy_parent_id |
328977306 |
hierarchy_top_title |
BMC medical informatics and decision making |
isfreeaccess_txt |
true |
familylinks_str_mv |
(DE-627)328977306 (DE-600)2046490-3 |
title |
Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method |
ctrlnum |
(DE-627)SPR028219724 (SPR)s12911-019-0892-y-e |
title_full |
Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method |
author_sort |
Taherkhani, Nasrin |
journal |
BMC medical informatics and decision making |
journalStr |
BMC medical informatics and decision making |
lang_code |
eng |
isOA_bool |
true |
recordtype |
marc |
publishDateSort |
2019 |
contenttype_str_mv |
txt |
author_browse |
Taherkhani, Nasrin Sepehri, Mohammad Mehdi Shafaghi, Shadi Khatibi, Toktam |
container_volume |
19 |
format_se |
Elektronische Aufsätze |
author-letter |
Taherkhani, Nasrin |
doi_str_mv |
10.1186/s12911-019-0892-y |
normlink |
(ORCID)0000-0002-9920-7452 |
normlink_prefix_str_mv |
(orcid)0000-0002-9920-7452 |
title_sort |
identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method |
title_auth |
Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method |
abstract |
Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. Methods To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. Results The results showed that the highest weight belongs to “Medical emergency” criterion and the lowest weight to “5 HLA mismatches”, which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model’s superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. Conclusions This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system. © The Author(s). 2019 |
abstractGer |
Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. Methods To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. Results The results showed that the highest weight belongs to “Medical emergency” criterion and the lowest weight to “5 HLA mismatches”, which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model’s superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. Conclusions This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system. © The Author(s). 2019 |
abstract_unstemmed |
Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. Methods To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. Results The results showed that the highest weight belongs to “Medical emergency” criterion and the lowest weight to “5 HLA mismatches”, which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model’s superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. Conclusions This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system. © The Author(s). 2019 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_SPRINGER SSG-OLC-PHA GBV_ILN_11 GBV_ILN_20 GBV_ILN_22 GBV_ILN_23 GBV_ILN_24 GBV_ILN_31 GBV_ILN_39 GBV_ILN_40 GBV_ILN_60 GBV_ILN_62 GBV_ILN_63 GBV_ILN_65 GBV_ILN_69 GBV_ILN_73 GBV_ILN_74 GBV_ILN_95 GBV_ILN_105 GBV_ILN_110 GBV_ILN_151 GBV_ILN_161 GBV_ILN_170 GBV_ILN_206 GBV_ILN_213 GBV_ILN_230 GBV_ILN_285 GBV_ILN_293 GBV_ILN_602 GBV_ILN_702 GBV_ILN_2001 GBV_ILN_2003 GBV_ILN_2005 GBV_ILN_2006 GBV_ILN_2008 GBV_ILN_2009 GBV_ILN_2010 GBV_ILN_2011 GBV_ILN_2014 GBV_ILN_2015 GBV_ILN_2020 GBV_ILN_2021 GBV_ILN_2025 GBV_ILN_2031 GBV_ILN_2038 GBV_ILN_2044 GBV_ILN_2048 GBV_ILN_2050 GBV_ILN_2055 GBV_ILN_2056 GBV_ILN_2057 GBV_ILN_2061 GBV_ILN_2111 GBV_ILN_2113 GBV_ILN_2190 GBV_ILN_4012 GBV_ILN_4037 GBV_ILN_4112 GBV_ILN_4125 GBV_ILN_4126 GBV_ILN_4249 GBV_ILN_4305 GBV_ILN_4306 GBV_ILN_4307 GBV_ILN_4313 GBV_ILN_4322 GBV_ILN_4323 GBV_ILN_4324 GBV_ILN_4325 GBV_ILN_4326 GBV_ILN_4335 GBV_ILN_4338 GBV_ILN_4367 GBV_ILN_4700 |
container_issue |
1 |
title_short |
Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method |
url |
https://dx.doi.org/10.1186/s12911-019-0892-y |
remote_bool |
true |
author2 |
Sepehri, Mohammad Mehdi Shafaghi, Shadi Khatibi, Toktam |
author2Str |
Sepehri, Mohammad Mehdi Shafaghi, Shadi Khatibi, Toktam |
ppnlink |
328977306 |
mediatype_str_mv |
c |
isOA_txt |
true |
hochschulschrift_bool |
false |
doi_str |
10.1186/s12911-019-0892-y |
up_date |
2024-07-03T18:03:00.535Z |
_version_ |
1803581947156365312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">SPR028219724</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230519201836.0</controlfield><controlfield tag="007">cr uuu---uuuuu</controlfield><controlfield tag="008">201007s2019 xx |||||o 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1186/s12911-019-0892-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)SPR028219724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SPR)s12911-019-0892-y-e</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Taherkhani, Nasrin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Identification and weighting of kidney allocation criteria: a novel multi-expert fuzzy method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2019</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">Computermedien</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Online-Ressource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s). 2019</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Background Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. Methods To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. Results The results showed that the highest weight belongs to “Medical emergency” criterion and the lowest weight to “5 HLA mismatches”, which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model’s superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. Conclusions This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kidney allocation</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy Delphi method</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intuitionistic fuzzy AHP</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Kidney allocation criteria</subfield><subfield code="7">(dpeaa)DE-He213</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sepehri, Mohammad Mehdi</subfield><subfield code="0">(orcid)0000-0002-9920-7452</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shafaghi, Shadi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khatibi, Toktam</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">BMC medical informatics and decision making</subfield><subfield code="d">London : BioMed Central, 2001</subfield><subfield code="g">19(2019), 1 vom: 06. Sept.</subfield><subfield code="w">(DE-627)328977306</subfield><subfield code="w">(DE-600)2046490-3</subfield><subfield code="x">1472-6947</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:19</subfield><subfield code="g">year:2019</subfield><subfield code="g">number:1</subfield><subfield code="g">day:06</subfield><subfield code="g">month:09</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://dx.doi.org/10.1186/s12911-019-0892-y</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_SPRINGER</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_23</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_31</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_39</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_60</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_63</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_65</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_69</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_73</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_74</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_95</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_105</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_110</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_151</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_161</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_170</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_206</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_213</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_230</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_285</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_293</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_602</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_702</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2001</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2003</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2006</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2008</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2009</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2011</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2015</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2020</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2025</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2031</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2038</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2044</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2048</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2050</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2055</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2056</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2057</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2061</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2111</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2113</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2190</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4012</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4037</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4112</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4125</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4249</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4305</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4313</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4322</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4323</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4324</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4325</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4326</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4335</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4338</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4367</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">19</subfield><subfield code="j">2019</subfield><subfield code="e">1</subfield><subfield code="b">06</subfield><subfield code="c">09</subfield></datafield></record></collection>
|
score |
7.401038 |